
PUPIL

Program for User Package
Interfacing and Linking

User Manual

PUPIL version 4.0

31 July 2022

Revision: User Manual v10.0d

PUPIL User Manual

2

I. Disclaimer
PUPIL (Program for User Package Interface and Linking) is free software. You may
redistribute it and/or modify it only under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

PUPIL is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY, including but not limited to any implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE or NON-INFRINGEMENT. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this
software; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth
Floor, Boston, MA 02110-1301, USA.

Neither the names of the EEBE, Quantum Theory Project, the Universitat Politècnica
de Catalunya, the University of Florida, the National Science Foundation, nor the names
of any of the copyright holders of PUPIL may be used to endorse or promote any
products derived from this Software without specific, prior, written permission from at
least one of the three Original Design contributors listed below.

II. Acknowledgments
Versions 3.1 and 3.0 have received partial support from PRACE by awarding with access
to resources Curie TN based in France at GENCI@CEA and MareNostrum based in
Spain at BSC

The 1.3 version and previous versions have received partial support from U.S. National
Science Foundation ITR Grant DMR-0325553 is acknowledged with thanks. This
material is based upon work also supported by the National Science Foundation under the
following programs: Partnerships for Advanced Computational Infrastructure, Distributed
Terascale Facility (DTF) and Terascale Extensions: Enhancements to the Extensible
Terascale Facility. The authors also acknowledge the University of Florida High-
Performance Computing Center and Teragrid (Grants TG-MCA05S010 and TG-
CHE060072T) for providing computational resources and support.

III. Trademarks
“Gaussian 03” and “Gaussian 09” are registered trademarks of Gaussian, Inc. (340
Quinnipiac St Bldg 40, Wallingford, CT 06492, USA).

We have endeavored to be scrupulous regarding trademarks. If we have overlooked a
trademark reference, we will be pleased to correct the oversight. Please contact one of the
three “Original Design” contributors listed below.

PUPIL User Manual

3

IV. Contributions
• Original Design:

– Juan Torras Univ. Politècnica de Catalunya, Spain
– Erik Deumens University of Florida, USA
– Samuel B. Trickey University of Florida, USA

• List of contributors (alphabetical order):
– Bertran, Oscar Univ. Politècnica de Catalunya, Spain
– Cao, Chao Zhejiang University, China
– Cheng, Hai-Ping University of Florida, USA
– Deumens, Erik University of Florida, USA
– Fu, Zheng La Jolla Institute for Allergy and Immunology
– He, Yao Yunnan University, China
– Muralidharan, Krishna University of Arizona, USA
– Roberts, Benjamin New Zealand eScience Infrastructure, New Zealand
– Roitberg, Adrian University of Florida, USA
– Seabra, Gustavo M. University of Florida, USA
– Torras, Juan Univ. Politècnica de Catalunya, Spain
– Trickey, Samuel B. University of Florida, USA

V. Standard Citations
Scientific papers and presentations incorporating results obtained using PUPIL must
reference the code as follows:

“PUPIL, Program for User Package Interfacing and Linking version 4.0, (2022) a
software product of the Universitat Politècnia de Catalunya, J. Torras, E. Deumens,
S.B.Trickey, H-P.Cheng, C.Cao, Y. He, K. Muralidharan, A. Roitberg, G. M. Seabra,
B. P. Roberts, O. Bertran, and Z. Fu.”

Users also are requested to cite at least one of the following four papers about PUPIL:

[1] “Software integration in multi-scale simulations: the PUPIL system”, J. Torras, E.
Deumens, and S. B. Trickey, J. Comput. Aided Mater. Des., 13, 201-212 (2006).

[2] “PUPIL: A systematic approach to software integration in multi-scale simulations”, J.
Torras, Y. He, C. Cao, K. Muralidharan, E. Deumens, H.-P. Cheng, and S. B. Trickey,
Comput. Phys. Commun., 177, 265-279 (2007).

[3] “A versatile Amber-Gaussian QM/MM interface through PUPIL”, J. Torras, G. M.
Seabra, E. Deumens, S. B. Trickey, and A. E. Roitberg. J. Comput. Chem. 29, 1564-
1573 (2008).

[4] “PUPIL: A Software Integration System for Multi-Scale QM/MM-MD Simulations
and Its Application to Biomolecular Systems”, J. Torras, B.P. Roberts, G.M. Seabra,
S.B. Trickey, Adv. Protein Chem. Struct. Biol., 100, 1-31 (2015).

PUPIL User Manual

4

VI. Table of Contents

1. INTRODUCTION ... 6

2. INSTALLATION ... 8

2.1 PREREQUISITES .. 8
2.2 PUPIL DIRECTORY STRUCTURE ... 9
2.3 BUILDING THE PLATFORM-INDEPENDENT COMPONENTS .. 11
2.4 BUILDING THE PLATFORM-DEPENDENT COMPONENTS ... 13
2.4.1 BUILDING LOOSELY COUPLED USER PACKAGES. ... 13
2.4.2 BUILDING TIGHTLY COUPLED USER PACKAGES .. 13
2.4.2.1 Conditioning Source Code .. 14
2.4.2.2 Linking User Package Objects with PUPIL Libraries .. 15
2.5 TESTING YOUR PUPIL INSTALLATION .. 17

3. RUNNING SIMULATIONS .. 19

3.1 PREPARING SIMULATION INPUT FILES ... 19
3.2 THE RUN SHELL SCRIPT ... 20
3.3 THE TEMPLATE SHELL FOR PARALLEL EXECUTION ... 21
3.4 OUTPUT SIMULATION FILES .. 22
3.4.1 MANAGER OUTPUT FILES .. 22
3.4.1.1 AppServer.log ... 23
3.4.1.2 output.xml .. 24
3.4.2 WORKER OUTPUT FILES .. 24

4. GUI – GRAPHICAL USER INTERFACE .. 25

4.1 SIMULATION ... 25
4.1.1 NEW/MODIFY SIMULATION. .. 25
4.1.2 CALCULATION UNITS SPECIFICATION. ... 27
4.1.2.1 Force Generation (QM) .. 28
4.1.2.2 Domain Identification ... 30
4.1.2.2.1 Manual Region Specification. .. 30
4.1.2.2.2 Saving/Loading Partitioning Rules ... 33
4.1.2.2.3 Domain Identification through an External Program .. 38
4.1.2.3 QM Applications Currently Implemented .. 40
4.1.2.4 Molecular Dynamics (MD). ... 44
4.1.2.5 MD Applications Currently Implemented .. 44
4.1.2.6 Domain Identification (DI) .. 45
4.1.3 KEYMM/KEYQM MAPPING.. 46
4.1.4 SHOW SIMULATION TREE .. 47
4.2 RESULTS .. 47

4.2.1 QM SIMULATION SUMMARY ... 47
4.2.2 EXTRACT XMOL FILE .. 47

5. XML SIMULATION FILE ... 48

5.1 THE SIMULATIONROOT ELEMENT .. 48
5.1.1 THE ATOMDICTIONARY ELEMENT .. 48
5.1.2 THE RESIDUEDICTIONARY ELEMENT ... 48
5.1.3 THE KEYMM ELEMENT .. 48
5.2 THE SIMULATION ELEMENT ... 48
5.3 EXAMPLE XML INPUT FILE ... 49

6. BIGLIOGRAPHY .. 52

PUPIL User Manual

6

1. INTRODUCTION
PUPIL (Program for User Package Interface and Linking), is a software

environment – the program – that allows developers to link quickly and efficiently
together multiple pieces of software in a fully automated multi-scale simulation. More
specifically, it supports QM/MM MD simulations where the user might choose among
any of the different MD engines and QM engines, which are connected to PUPIL as
external programs through a tiny specific interface. One of the main advantages here is
that the user can use most of the functionalities that may have those external programs
interfaced without the necessity to be implemented again on independent interfaces. In
fact, this simulation interface concentrates all the common code involved in the coupling
terms of the QM/MM approach.

PUPIL allows developers to accomplish an increasingly important task, namely,
systematic, efficient linking of several independent pieces of software or “user packages”
– that have been and are actively being developed by researchers. PUPIL is general and
can be used to link user packages from any scientific or engineering domain. However, it
was originally developed with multi-scale simulation in materials physics and chemistry
in mind, and several of the interfaces included in this release show that heritage.1

This manual explains how to download, build, and install PUPIL. It also explains how
to set up and perform a calculation. In this Introduction, we give a brief overview of the
PUPIL architecture so you can gain a basic understanding of how PUPIL works.
However, to get a thorough understanding, you should read the publications listed in the
Standard Citations section above.1-4 Also, please keep in mind the Standard Citations
requirement listed in the preliminary material of this manual.

The design philosophy of PUPIL is to provide an environment for the software
developer of user packages to do simulations in which data and simulation control are
transferred from one user package to another in a straightforward manner. A design
requirement is to do this without creating a monolithic, single-threaded code. A further
design requirement is that changes in any of the user packages needed to couple them to
PUPIL should be small and systematic. To make such changes, one obviously must
understand the user package. However, a PUPIL design objective is to avoid the need to
have a complete and exhaustive understanding such as usually is required when one
wants to create a combined user package from multiple, independently developed user
packages.

PUPIL itself acts as a supervisor program, coordinating execution and
communication between the user packages, each of which provides a calculation unit
(CU). The supervisor is implemented as a distributed program with one manager and
several workers, one worker for each CU (Figure 1.1).2 The manager and the workers
communicate using the RMI (Remote Method Invocation) Java protocol. Workers
communicate with tightly coupled user packages via subroutine calls, and with loosely
coupled user packages through data files. The manager and the worker codes are written
in Java. The Java code for each worker calls C code in the CU through the JNIa (Java

a Oracle, Java Native Interface 6.0 specification

PUPIL User Manual

7

Native Interface). The CUs, often written in Fortran or C, communicate with their
workers via a PUPIL library, written in C.

Throughout this manual, we observe a few naming and typographical conventions.

Commands to be typed in at a prompt are given in monospace and follow a $ sign (which
denotes the shell prompt). Directory and file names that are not given as part of a
command are shown in italics. The terms “coordinates” and “system coordinates” mean
coordinates of nuclei and/or residues. (Electronic coordinates are internal to quantum
mechanical CUs.)

PUPIL MANAGER

CORBA

MD-CU
Worker

DI-CU
Worker

MD
Calculation

Domain Id.
Calculation

PUPIL SUPERVISOR

QM-CU
Worker

QM
Calculation

Figure 1.1. PUPIL Architecture. Coordination and management of

external packages such as Molecular dynamics (MD), quantum
mechanical (QM), and domain identification (Domain ID) in a unique

RMI

PUPIL User Manual

8

2. INSTALLATION
This chapter discusses in detail the steps needed to build and install PUPIL on your
computer system. This information is most valuable to the system administrator. In
addition, developers who want to interface their user packages with other user packages
through PUPIL will find the information essential. Researchers who want to use PUPIL
together with a set of already configured user packages do not have to read this chapter.

2.1 Prerequisites
To build and install PUPIL, the following software components must be installed on your
computer system:

• Java SDK 1.11 or posterior http://www.oracle.com/
technetwork/java/javase/overview/index.html
Warning:The previous versions to the 4.0 of PUPIL
only work with Java 1.8.

• Apache Ant http://ant.apache.org
• GNU make (“gmake”) http://www.gnu.org/software/make
• CMake 15.0 or posterior https://cmake.org
The present release of PUPIL includes support for eight user packages. To use any

one of them, you must have access to it or else obtain a licensed copy and install that
package on your computer system. We strongly recommend testing each user package by
itself before using it with PUPIL.

• User Packages:
– Amber v18, v22 http://www.ambermd.org/
– deMon2k v 6.1.1 http://www.demon-software.com/
– DL_POLY (classic)v1.10 https://gitlab.com/DL_POLY_Classic/dl_poly/-/tags
– Gaussian 03 or 09 http://www.gaussian.com/
– MOPAC 2016 http://openmopac.net/
– NWChem7.0.2 https://github.com/nwchemgit/nwchem/releases
– ORCA v 3.0.3,v4.0,v5.0.3 https://orcaforum.cec.mpg.de/
– SIESTA v4.0 or v4.1.5 https://gitlab.com/siesta-project/siesta/-/tags

To view molecular and material structures in its graphical user interface, PUPIL uses
the Jmol tool, which is included with PUPIL as a precompiled jar library.

• Jmol: http://jmol.sourceforge.net
To optimize the processors resources assigned to each QM calculation when is

dealing with multiple active zones (several QM regions, maz-QM/MM MD approach),
PUPIL uses the Opt4J library, which is included as a precompiled jar library.

• Opt4J: https://sdarg.github.io/opt4j/

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://ant.apache.org/
http://www.gnu.org/software/make
https://cmake.org/
http://www.ambermd.org/
http://www.demon-software.com/
https://gitlab.com/DL_POLY_Classic/dl_poly/-/tags
http://www.gaussian.com/
http://openmopac.net/
https://github.com/nwchemgit/nwchem/releases
https://orcaforum.cec.mpg.de/
https://gitlab.com/siesta-project/siesta/-/tags
http://jmol.sourceforge.net/
https://sdarg.github.io/opt4j/

PUPIL User Manual

9

2.2 PUPIL Directory Structure
Download the latest release of PUPIL from http://pupil.sourceforge.net. Extract all files
from the .tar file. In the resulting directory, you will find the following subdirectories:

• doc/ PUPIL manual and JavaDoc of class diagram
• scripts/ Directory containing the shell scripts needed to run PUPIL
• src/ Source code
• tests/ Directory containing tests of the PUPIL system and some binaries
• jmol/ Directory containing the precompiled Jmol library

Directory which contains the Jmol libray (*.jar) (Note: The users who
wish to update Jmol version (14.32.63) supplied with PUPIL will need to
copy Jmol.jar library from the Jmol source code and change its name to
JmolBean.jar inside this directory.)

You also will find the following files:
• build.xml.head and build.xml.tail: Two files used, along with information

garnered at configure time, to prepare build.xml, the build file (similar to a
Makefile) required by Apache Ant

• CMakeList.txt: CMake files that rules the compilation, build and installation.

Inside the directories mentioned above, you will find the following files:
• src/ directory:

– pupil-interface/
Directory which contains the PUPIL machine-dependent code, including
source code for the C interface (JNI), source code for various “stub”
programs that are used primarily for testing and development, source code
for PUPIL utility programs, and patches for CUs themselves.

– PUPIL/
Directory which contains the Java source code for the PUPIL manager and
workers.

• tests/ directory:
– sio2/

Simple tests using silicon dioxide; these test the MD programs stubMD
and DL_POLY, and the QM programs stubQM, DeMon2k, Gaussian,
MOPAC 2016, NWChem, ORCA, and Siesta.

– ala-di/
Simple test of alanine dipeptide QM/MD in explicit water; this tests the
MD programs Amber and DL_POLY, and the QM programs stubQM,
DeMon2k, Gaussian 03, Gaussian, MOPAC 2016, NWChem, and ORCA.

– ala3/
Simple link atom test for a system consisting of a simple peptide, ACE-
(ALA)3-NME, in explicit water. This test uses the MD programs Amber

http://pupil.sourceforge.net/

PUPIL User Manual

10

and DL_POLY and the QM programs stubQM, Gaussian 03, Gaussian,
and NWChem.

– ala3-forces/
As with ala3 (see above), this test uses the Amber MD program and the
QM programs Gaussian 03 and later Gaussian versions. It is a much longer
test that uses the Amber debugging routines to compare and contrast
forces computed by analytical differentiation and those computed
numerically.

– h2o/
Simple tests using two single waters molecules as multiple active zones
(two QM regions, one molecule per region) testing the maz-QM/MM MD
approach. This test uses the MD programs Amber and DL_POLY, and the
QM programs MOPAC 2016, NWChem, Gaussian and ORCA.

– ubiquitin/
A test for the GUI. It contains a single *.xml input file (e.g., data.xml)
which, when loaded into the GUI and written out again, should yield the
same result (with exceptions for trivial re-ordering, e.g., of hash table
entries).

Many scripts, CMake files, etc., which run most tests based on the contents of the
directories described above. Of particular importance are the files pupil-run-
test.sh, a piece of shell code that should be included in any new test script And
install_test.sh which runs the installation test that is a pre-condition for
running rest of tests.scripts/ directory:

 (NOTE: The files in the scripts/ directory are copied into $PUPIL_PATH/bin
at installation time)

– pupil-clean.sh
A shell script to remove output and temporary files from a PUPIL
execution directory. Since PUPIL uses standard names for its output, in
most cases this script should be usable as is.

– pupil-gui
A script to open the PUPIL GUI.

– pupil-run.sh
A template shell script to execute a PUPIL calculation. This shell script
intends to be a general script to execute PUPIL and should not be modified
by the user.

– pupil_paraRun.sh
A template shell script for use of an MPI-compatible (OpenMPI) QM
program with PUPIL.

– pupil_paraRun_demon2k.sh
A modification of the template shell script pupil_paraRun.sh to be used
specifically with the deMon2k package.

– pupil-timings.sh

PUPIL User Manual

11

A script to extract timing information from a PUPIL run.
– pcforcempi.sh

Specific template to start the parallel pcforce program, external to PUPIL
package, in a general OpenMPI environment (used only with the old
version of NWChem 6.1.1 and deMon2k QM programs, see §4.1.2.3).

Throughout this manual, we assume that the environment variable PUPIL_PATH
contains the directory into which PUPIL’s binaries and libraries will be installed. This
variable can be set in shells such as sh or bash by the following command, which can
also be added to your .bashrc file:

$ export PUPIL_PATH=/path/to/top/directory/pupil

where /path/to/top/directory/pupil is replaced by the path to the directory in
which PUPIL is installed (such as /usr/local/pupil-4.0 or /opt/pupil-4.0).

2.3 Building the Platform-independent Components
The graphical user interface (GUI) (see below) and PUPIL Supervisor are implemented
in Java. Compilation is done using ant, which is called using cmake.
1. Extract the PUPIL code from the archive.

$ tar -xjvf pupil-4_0.tar.bz2

2. Create a build directory and go into it.
$ mkdir build

$ cd build

3. Build PUPIL:
$ cmake ../pupil-4.0 -DCOMPILER=”GNU”

-DCMAKE_INSTALL_PREFIX=../install

4. The -DCMAKE_INSTALL_PREFIX option allows you to change the install location
(default: /usr/local); The -DCOMPILER option makes possible to change between GNU
and INTEL compilers. Build the PUPIL binaries and libraries:
$ make

5. Install the tests directory tree and run some preliminary tests (stubs and loosely
coupled user packages):
$ ctest -VV -R install

This first test runs installation, so also it can be done with
$ make install

Then PUPIL’s independent tests should be run
$ ctest -VV -R sio2-stubMD-stubQM

For more details about testing go to the Test section in $2.5

6. Install the PUPIL binaries and libraries:
$ make install

PUPIL User Manual

12

Two Java jar files will be created and stored in the
DCMAKE_INSTALL_PREFIX/lib directory:

– PupilCore.jar
This has the PUPIL supervisor code and the shared PUPIL worker codes
to be used in any simulation. See Chapter 3 for execution details.

– PupilGUI.jar

The graphical user interface. See Chapter 4 for execution details.

Three shared libraries also will be placed in the same directory:
– libPUPIL.so

Main Interface between User Packages and the Java PUPIL supervisor.
– libPUPILTime.so

Library with routines to compute timing.
– libPUPILBlind.so

Library with stub functions. If a particular User Package does not define
certain functions (usually because it does not need them), the stub library
will provide a dummy replacement, so that the linking step can complete
successfully.

 Note: When linking any program to PUPIL, libPUPILBlind.so always should be
placed at the end of the link line.

Four binaries also will be made. Three of them are stubs to test the functionality of
the manager in the simulation, each corresponding to one of the three roles that any
application can play in a multi-scale simulation. The fourth, pcforce (see §4.1.2.3), is a
parallel MPI binary, needed with some QM user packages, that calculates a force
correction to classical particles as a result of the QM region. All of them will be installed
in the DCMAKE_INSTALL_PREFIX/bin directory. The four binaries are:

• stubMD Simulates the calls to/from the PUPIL library by a
Molecular Dynamics Calculation Unit for a few
steps.

• stubDI Simulates the calls to/from the PUPIL library by a
Domain Identification Unit.

• stubQM Simulates the calls to/from the PUPIL library by a
Quantum Mechanics Calculation Unit.

• pcforce A utility provided with the PUPIL source code (but
external to PUPIL per se) to calculate the forces
upon the embedding point charges due to the
interaction with the electron density of the quantum
zone. Only to be used in some of the old QM CU
versions.

A JavaDoc describing the PUPIL conceptual model (data structures and their
relationships) also will be created in javadoc/index.html.

PUPIL User Manual

13

7. Add the PUPIL library path to the $LD_LIBRARY_PATH environment variable:
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PUPIL_PATH/lib

Add the PUPIL bin and lib path to $PATH environment variables
$ export PATH=$PATH:$PUPIL_PATH/bin:$PUPIL_PATH/lib

Note: On some platforms it may be necessary to specify the Java libraries in the
LD_LIBRARY_PATH as well, for example:
$ export
LD_LIBRARY_PATH=$JAVA_HOME:$JAVA_HOME/lib:$JAVA_HOME/lib/server:$LD_L
IBRARY_PATH

where $JAVA_HOME is a variable with the full path to the Java installation (or
equivalent). Check your Java installation for specific details.

2.4 Building the Platform-dependent Components
The procedure to build the platform-dependent PUPIL binaries and libraries is described
in this section. The steps are listed in the order in which they should be executed.

2.4.1 Building Loosely Coupled User Packages.
Some QM User Packages run as independent executables called by the PUPIL system.
These packages do not require any source-code modification or recompilation to work
with PUPIL. This mode of CU operation is called Start-Stop (SS), because a new instance
of the QM CU is executed at each force evaluation. Loosely coupled CUs should be
compiled by themselves as usual, following their own instructions. Their locations can be
made known to PUPIL by means of the, though a symbolic link in $PUPIL_PATH/bin.
Currently, the User Packages that run in Start-Stop mode with PUPIL are:

– deMon2k v4.3.8 or v6.1.1
– Gaussian 03 or 09 and later
– MOPAC 2016
– NWChem 6.1.1,6.5, 6.6, or 7.0.2
– ORCA 3.0.3 or 4.0.1.2
– SIESTA v4.0 or v4.1.5

Some User Packages require extra data files, such as basis set libraries. (An example
is the pair of files AUXIS and BASIS used by deMon2k. To run preliminary tests of the
deMon2k program, you should set the DEMON2K_AUXIS and DEMON2K_BASIS
environment variables with the correct AUXIS and BASIS paths, respectively.) These
files must be visible at the location specified for that User Package executable, on every
computer where the package will be run by PUPIL. Also, ORCA_PATH environment
variable has to be set with the correct ORCA binary path to run orca tests. These data
files do not need to reside inside the $PUPIL_PATH tree.

2.4.2 Building Tightly Coupled User Packages
Tightly coupled User Packages require source-code modification and linking with the
PUPIL libraries to be used with the PUPIL interface. Three steps are required to build

PUPIL User Manual

14

such tightly coupled User Packages: Conditioning the source code (see next Subsection),
compiling PUPIL libraries, and finally, building the new tightly coupled User Package
binaries linked to the new PUPIL libraries compiled in the preceding step.

2.4.2.1 Conditioning Source Code

The User Packages that have an interface to interact directly with the PUPIL system
should be conditioned (i.e., modified) before their compilation. The exact conditioning
process varies among User Packages.

– DL_POLY and SIESTA
Source code patches for these programs are distributed with PUPIL in a separate
file (dlpoly_siesta_PUPILpatches-v4_0.tar.gz). The steps to patch the original
source code are the following:

1. Download source code for the User Package to build the new Calculation Unit
(DL_POLY or SIESTA) to plug into PUPIL. This source code will be
modified during the compilation
 dl_poly classic v1.9 or v1.10
 siesta-4.0 or siesta-4.1.5

2. If not already downloaded, download the patch file from
http://pupil.sourceforge.net.

3. Decompress and extract the patch file:
 tar –xvzf dlpoly_siesta_PUPILpatches-v4_0.tar.gz

4. Change to the extracted patch directory and edit the patching shells *.sh, as
follows.

Add the correct directory in the configuration section of the script. This
directory corresponds to the place where the source code of the User Package
to be patched with the PUPIL Interface is located. (See the README file.)

5. Select the patch to be used. This must be change in the `patching shells *.sh,
changing the pathFile variable (to the path to de desired patch to be applied)

6. Execute the patching shell from this directory. The patching shell must have
execute permissions.

The patches currently tested with PUPIL package correspond to DL_POLY
classic v1.9 or v1.10 and SIESTA v4.0 or 4.1.5. Before applying the patch you
must select the correct patch. The information about which patch corresponds to
which version is inside the README file within the
dlpoly_siesta_PUPILpatchesv4_0.tar.gz compress file.

– Amber, versions 10,11,12,14,16, 21 and 22
Up through Amber version 16, the source code already includes the modifications
necessary to interface with the PUPIL library, so further conditioning is not
necessary to support use with PUPIL. See §2.4.2.2 for instructions on compiling
and linking the “sander” binary.

Note: Currently, sander program is included in the AmberTools 22 package.

PUPIL User Manual

15

2.4.2.2 Linking User Package Objects with PUPIL Libraries

All User Packages (CUs) tightly coupled with PUPIL must be linked with the PUPIL
libraries previously compiled and the platform-dependent Java libraries (see §2.3). The
environment variables LD_LIBRARY_PATH, PUPIL_PATH, and JAVA_HOME also
must be set.

– DL_POLY and SIESTA
1. Change to the source code directory of the already patched packages. The

patched source code contains a Makefile already prepared for a default
machine but a sanity check is strongly recommended. Make sure you have the
correct Makefile, and the PUPIL libraries have been added correctly (see §2.3
points 6 and 7).

2. Compile the binaries.
For DL_POLY (DL_CLASSIC version 1.10), after you have applied the
patch, as explained in section $2.4.2.1, you can choose between the types of
compilation in the source directory (to see all option write “make” in the
terminal and press the tab key from your keyboard).
 $ make pupil-dlpoly
Then move to the execute directory on the top directory. There you will have
the dlpoly executable named as DLPOLY.X. Copy the path to the dlpoly
executable and move to $PUPIL_PATH/bin
 $ ln -s /path/to/executable/DLPOLY.X dlpoly

For siesta (version 4.1.5), after you have applied the patch, as explained in
section $2.4.2.1. Move to the Obj directory in the uncompress directory from
siesta and execute.
 $ sh ../Src/obj_setup.sh

Copy one of the arch.make types (for more information look at the siesta
manual), for example the gfortran.make. Then, you can compile.
 $ make

After that, make the symbolic link in the $PUPIL_PATH/bin directory
 $ ln -s /path/to/Obj/siesta siesta

– Amber, version 21 and 22
Download the source code from the repository (http://ambermd.org) and
uncompress the file. Then move to the build directory, allocated on the top
directory of the uncompressed file, and run the executable (Must be installed
Cmake for installing amber)

$./run_cmake

If the CMake build report looks OK you can run the next commands.

http://ambermd.org/

PUPIL User Manual

16

To see if amber compilation have find the pupil libraries (remember that you
should add the $PUPIL_PATH/lib to the $PATH and $LD_LIBRARY_PATH
environment variables) at the end of the CMake build you should see a section called
3rd Party Libraries, and in the subsection “using installed” you should find a line
listing pupil as a 3rd party library. If it doesn’t appear it means that the initial
configuration by CMake has not worked.

Then you can proceed with the compilation and installation of the binaries,
libraries and other utilities.
$ make install
$source /path/to/top/dir/Ambertools22/AmberTools22/amber22/amber.sh

This will create the sander.PUPIL executable located in the $AMBERHOME/bin
directory.

You will need now to tell PUPIL where to find this executable. PUPIL will look for a
file called sander in the $PUPIL_PATH/bin directory. So, you can either copy the
sander.PUPIL executable there with the new name:

$ cp $AMBERHOME/bin/sander.PUPIL $PUPIL_PATH/bin/sander

or create a symbolic link there:
$ ln -s $AMBERHOME/bin/sander.PUPIL $PUPIL_PATH/bin/sander

– Amber, version 14 and 16
Before you continue, make sure you have applied all the bug fixes for Amber
(available from http://ambermd.org/bugfixes), and that you can build and
successfully test a fully functioning stand-alone (serial) version of Amber from
the patched code. See the Amber manual for details.

1. Change to the $AMBERHOME/AmberTools/src/sander/ directory:
$ cd $AMBERHOME/AmberTools/src/sander

2. Compile the updated sander code and link it with PUPIL libraries in order to
incorporate the PUPIL interface, as follows:
$ make $AMBERHOME/bin/sander.PUPIL

 Alternatively you can compile all additional stand-alone programs (which
 also includes sander.PUPIL) by executing the following command:

 $ make all_serial_programs

– Amber, versions 10, 11 and 12
Similarly to Amber 16, you have to make sure that all the bug fixes for Amber has
been applied, and a stand-alone (serial) version of Amber has been successfully
compiled and tested.

1. Change to the $AMBERHOME/src/sander/ directory:
$ cd $AMBERHOME/src/sander

http://ambermd.org/bugfixes

PUPIL User Manual

17

2. Compile the updated sander code and link it with PUPIL libraries in order to
incorporate the PUPIL interface, as follows:
$ make sander.PUPIL

2.5 Testing Your PUPIL Installation
To test the compiled PUPIL libraries, CU binaries, and the Java supervisor, it can be use
the Cmake tool Ctest, as it is explained further down. All tests are built during
compilation, so after you compile you can check the proper functioning using Ctest or
running in the $PUPIL_PATH/test directory the bash files of each test. If the second
option is followed, is imperative to run the install_test.sh script before running any
others. All the binaries, or symbolic links to them, must be present in the
$PUPIL_PATH/bin directory following the naming convention used above. This
Makefile is used for several tests, e.g. the SiO2 molecule, alanine dipeptide, and alanine
tripeptide are run using all the possible combinations of the stub, MOPAC, SIESTA, g03,
Gaussian, deMon2k, NWChem, and ORCA as QM Calculation Units and the stub,
Amber, and DL POLY as the MD Calculation Units (Amber is not included on the testing
with the SiO2 molecule). It is assumed that, mopac, dlpoly, siesta, g03, gaussian,
demon2k (demon2k.MPI), nwchem (nwchem.MPI), orca, and all the stubs are stored in
the $PUPIL_PATH/bin directory. Follow the next table to assign the correct name to each
symbolic link.

Software Name of symbolic link
Gaussias 03 g03

Gaussias 09 or later gaussian

Nwchem (serial) nwchem

Nwchem (parallel) nwchem.MPI

Demon2k (serial) demon2k

Demon2k (parallel) demon2k.MPI

Orca orca

Mopac mopac

Amber sander

Siesta siesta

Dlpoly dlpoly

Table 1. Name of symbolic links for each software to use that PUPIL will recognize.

Note: All tests involving NWChem it is assumed that one of the newer version are used
and stored in the $PUPIL_PATH/bin directory.

1. In the PUPIL build directory, run the following command:
 $ ctest -VV -R install

PUPIL User Manual

18

2. Now you can run any test, to see the full list of text run.
$ ctest –N

Use regular expression option (“-R”) to select tests and verbose option (“-VV”) to see
results of tests. Follow the instructions in the following table to select some usual options.

Test group Command
All test ctest –VV

Clean all directory test ctest –VV –R clean

Specific test ctest -VV sio2-dlpoly-nwchem

All serial test ctest -VV -R A(?!. *MPI).*

All parallel test ctest -VV -R .*\bMPI\b.*\b

All test except the ala3-forces test ctest -VV -R A(?!. *forces).*

All test of one software {example: dlpoly} ctest -VV -R dlpoly

All test which matches QM and MM software
[example: all amber g03][order should
coincide with test name]

ctest - V V -R \bamber\b. *\bg03\b

All test which matches QM and MM software
and no pcforce

Ctest -VV -R A(?!. *forces).*\bamber\b.
*\bg03\b

Table 2. Usual options to run the PUPIL tests.

All those commands run a number of tests. It skips combinations for which the
calculation units cannot be found. For other combinations, it will perform a short PUPIL
calculation and compare the result against a saved file, reporting a failure if the
differences are not of an acceptable type. (Numerical differences with errors larger than
5•10-4 % are reported as a failure)

Note: Small numerical differences between the energy values in the
AppServer.log file created during the simulation and those in the reference
AppServer.log.save file can result in false reports of failures. Check the
real differences on the output of the test to avoid confusion with false
errors.
Also, please notice that some differences were observed in the number of
calls for forces calculations from the Amber program (PUPIL calls)
depending on the Amber version. Of course, that gives a different number
of simulation steps reported in the AppServer.log file between Amber
versions v11 and v12. Results from v12 have an extra iteration at the last
MD step which also can lead to artificial failure reports.

PUPIL User Manual

19

3. RUNNING SIMULATIONS
The whole QM/MM-MD simulation process might be represented in four steps

(Figure 3.1). First, the user builds a XML file using the PUPIL graphical interface with
all the information required by the simulation and supported by the input files of the
external calculation units to be used. Next, the queue system assigns the resources that
will be needed (in case to be executed in a computer cluster). The third is the most
complicated step and builds the core of the simulation. The main PUPIL server manages
the simulation by starting the interfaces and its associated external software packages
(calculation units). The communication between those units will be a mix between the
RMI space and input and output data files. Finally, the user interface extracts the requisite
information through the output XML simulation file, or may be using any other
additional viewer or software to deal with the output files data.1

3.1 Preparing Simulation Input Files
The PUPIL system allows the user to link all the calculation units (CUs) easily, but it is
the user’s responsibility to prepare all the input files for each CU so that each one will
work correctly within the simulation. The PUPIL manager does not check the validity of
the input files for the individual CUs. Please refer to the respective User Package manuals
for instructions on input file preparation.

The coordinates of the molecular system, cluster, or extended system, as well as the
classical type of each atom, are specified in the input files for the Molecular Dynamics
CU. Different potentials for the same element can be represented as different atom types.
For example, in a simulation of silica with water we could have two kinds of classical
Oxygen atom, Oxygen from silica and Oxygen from water.

Figure 3.1 Steps and relationships between the different elements involved in a PUPIL simulation.

Start-Stop approach, where the MD package is the only one tightly coupled with the PUPIL framework.

RMI

PUPIL User Manual

20

The input file for the QM CU supplies the general quantum variables except for the
system coordinates. The quantum types of the particles also are obtained from this input
file. The PUPIL system parses this file to record the different quantum particles that the
user has defined in the multi-scale simulation. Following the same example of silica and
water, we could assign different basis sets to the Oxygen atoms belonging to the silica
and to those belonging to water. Beware: if an element of the periodic table occurs two or
more times in ways that differ in any respect, then each different occurrence must have a
unique atom name. For example, two Oxygen atoms with different basis sets must be
named differently.

With the two kinds of particles, classical and quantum, recorded, PUPIL creates a
default mapping between them, indexed by the atomic number. The default mapping can
be modified using the PUPIL GUI (see §4.1.3).

3.2 The Run Shell Script
The pupil-run.sh script included in this package is made to build the simulation
environment by starting the PUPIL supervisor, and all required CUs which are specified
in the input XML file used by PUPIL to run the simulation (e.g., file.xml). Construction
of this file is discussed in Section 4 and its structure is discussed in Section 5. Unlike in
previous versions of PUPIL, this XML file may have any name. The PUPIL run script
can be used with the following syntax:

$ pupil-run.sh file.xml >&2

The previous command can be used interactively o through a queue manager. On the
latter case, the pupil-run.sh script execution command may be incorporated into any
container script that should be used according to the cluster queue system. Thus, a very
simple example using PBS (Portable Batch System) directives to submit the job using a
PBS queue manager, it would be:

#!/bin/sh

#PBS -N test

#PBS -o test.log

#PBS -e test.err

#PBS -m abe

#PBS -q your_queue_name

#PBS -l nodes=1:ppn=8

DIR=/directory/path/where/your/files/are/stored

cd ${TMPDIR}

PUPIL User Manual

21

Initial files copy

cp ${DIR}/data.xml .

cp ${DIR}/pupil-run.sh .

recovering resources names to be used

N=`wc -l $PBS_NODEFILE | awk '{print $1}'`

echo Nr nodes $N

cp $PBS_NODEFILE resources.txt

#executing Pupil script

time pupil-run.sh data.xml > run.log

#recovering files

tar cvzf run.tar.gz .

cp run.tar.gz ${DIR}

Note: PUPIL manager will recognize the assigned resources from the queue manager in
a file named resources.txt.

3.3 The Template Shell for Parallel Execution
Prior to starting any parallel worker (QM or MD), the parallel environment must be
initiated in accordance with local hardware and software cluster characteristics and
policies. A startup shell script is generated from the PUPIL core following a user-
provided shell script template which incorporates those local cluster characteristics and
policies. An example would be the MPI environment commands to get the worker
running in the local hardware environment and the execution syntax for the
corresponding CU.

The PUPIL Manager creates a startup shell script to initialize the parallel code based on a
template shell given and/or modified by the user (pupil_paraRun.sh). The way to
accommodate the given template shell for parallel execution is via environment variables
which values are provided from the PUPIL Manager; it knows the correct values for
them. The user should place these environment variables properly inside the template in
order to get a startup parallel shell script that is correct for the user's computing
environment. Currently supported environment variables for the parallel shell build are
the following:

PUPIL_WORKPATH Directory where the parallel CU will be executed by
default.

PUPIL User Manual

22

PUPIL_RESOURCES List of resources (processors or nodes) to be used in
the upcoming parallel CU execution

PUPIL_EXE Line command to start the parallel program.
Includes all the PUPIL additions to initiate the CU
and JVM.

PUPIL_FILE_IN Input file for the parallel CU execution.
PUPIL_FILE_OUT Output file from the parallel CU.
PUPIL_FILE_ERR File where all the error messages from the parallel

CU are to be stored.

Moreover, three template shells for parallel execution are provided in the directory
$PUPIL_PATH/scripts.

- pupil_paraRun.sh
General template that starts a general OpenMPI environment to run a general
PUPIL Worker properly (used with the NWChem CU).

- pupil_paraRun_mpich2.sh
General template that starts MPICH2 environment to run a general PUPIL -
Worker.

- pupil_paraRun_demon2k.sh
Specific template to start the parallel deMon2k CU execution in a general
OpenMPI environment.
- pcforcempi.sh
Specific template to start the parallel pcforce program in a general OpenMPI
environment (see §4.1.2.3).

- pcforcempi_mpich2.sh
Similar to the previous one but starting the parallel pcforce program in a MPICH2
environment.

The user must NOT change the value of the general environment PUPIL variables for the
template, since doing so would result in erroneous behavior of the simulation package

3.4 Output Simulation Files

3.4.1 Manager Output Files
There are two types of files that consolidate all the outputs from PUPIL simulations,
AppServer.log and the output files from distributed CUs.

PUPIL User Manual

23

3.4.1.1 AppServer.log

This file is written by the PUPIL Manager. All the CUs exchange information and events
with the Manager, which is in charge of writing them in this log file. There are four
different levels of output detail:

 -1 Only errors are printed.

 0 Normal comments and errors are printed (default level).

 5 Debugging information, except for system coordinates, is printed.

10 All coordinates and debugging information are printed.

Every entry in the log file has the origin of the message enclosed in brackets, [], at
the beginning of the line. The most common sources of comment entries are the
following:

– CoordinatesServer
This is the general MD worker, which receives the classical system coordinates
and generates the QM system coordinates.

– CoordIntfc
This Java class implements the RMI server for the CoordinatesServer. Usually,
CoordIntfc receives the quantum forces from the general QM worker and the
quantum zone from the General DI worker.

– ForcesServer
This is the general CycleQM worker. It receives the quantum forces from the
quantum packages through the PUPIL library and sends those forces to
CoordIntfc.

– ForcesIntfc
This Java class implements the RMI server for ForcesServer. It receives the
quantum system coordinates and puts them into the cycleQM package through the
PUPIL library.

– DomainsServer
This is the general DI worker. It receives the atom numbers that belong to the
quantum zone from the DI packages through the PUPIL library and sends that
information to CoordIntfc

– DomainsIntfc
This Java class implements the RMI server for DomainsIntfc. It receives the
classical particle coordinates, atom types, and other variables to pass through the
PUPIL library to the program that will determine the quantum domain.

– PUPIL.Domain
These are specialized Java classes from the System Domain, which are
responsible for any specific CU behavior, such as SiestaQMJob, etc.1-2

PUPIL User Manual

24

3.4.1.2 output.xml

This file has a structure similar to that of the simulation XML input file (*.xml, see
Chapter 5) but with all the intermediate results obtained in the simulation. The user
decides how many steps will be taken before writing a new record to output.xml. This
output file is useful for following the multi-scale simulation. However, the output can
become quite large when the physical system has a large number of particles. If the
number of particles is very large, writing this file may exceed available memory, causing
PUPIL to crash. The memory resources are monitored in the AppServer.log file. To avoid
crashing PUPIL when the physical system has a very large number of particles, the user
may have to consult whatever intermediate files the CU may provide to analyze the
simulation results instead of adding new intermediate steps to be stored in the output.xml
file (see §4.1.2.4).

3.4.2 Worker Output Files
The standard output and standard error channels for all general workers are redirected to
files (one standard output file and one standard error file for each worker). All the normal
output from the workers is contained within these files. Errors that occurred in any
worker can be monitored in these files as well as in the general log file. The debug
messages from the worker–PUPIL interfaces and the PUPIL C libraries also may be
found in these files.

PUPIL User Manual

25

4. GUI – Graphical User Interface
PUPIL’s graphical user interface (Figure 4.1) helps the user to build the input file with a
XML format (e.g., data.xml) for a multi-scale simulation. This chapter explains the GUI
options.

The GUI is started using the following command:
$ pupil-gui

4.1 Simulation
The simulation input consists of a brief description of the whole simulation task and the
information necessary to run each Calculation Unit. All this information will be stored in
memory in the same way as in the XML input file (e.g., data.xml) created to run the
simulation (see Chapter 5).

4.1.1 New/Modify Simulation.
In the first step, a new simulation must be created via the Simulation →
New Simulation Input menu option (Figure 4.2). The following fields must be completed:

– Simulation Name
A user-defined name for this simulation.Base Directory

This is the path of the working directory in the file system where PUPIL will
create the output and temporary files. A period (decimal point or full stop, “.”)

Figure 4.1. PUPIL GUI screen shot which shows the state immediately after loading the QM Calculation
Unit files. In this example, Gaussian is being used as the QM CU.

PUPIL User Manual

26

may be used to indicate the directory in which the initial shell script (pupil-run.sh)
is executed.

– Log Level
Shows the level of printing from the PUPIL system during the simulation. Three
possibilities are accessible from the GUI:
– Without log printing: Only errors will be printed.
– Normal log printing: Basic output will be printed, allowing the user to

follow the simulation’s progress.
– Debug log printing: Detailed information about the data (except for

particle coordinates) from each worker will be
printed at each simulation step.

Though not accessible from the GUI, there is a fourth, extremely verbose log level which
prints the coordinates of each atom at every step. This level may be accessed by giving
the optPrint element in the input XML file (*.xml; see Chapter 5 for a brief description of
this file) a value of 10.

– Max. number of Java Threads
For shared-memory (SMP)
machines, this input allows one
to specify the number of threads
to be created by the Java code,
and with which the PUPIL
Manager will work in parallel.

Some bottleneck points from
PUPIL Core have been
parallelized in the current
version, mainly the QM Domain generation using neighborhood rules and the
long-range electrostatics calculation using Ewald Summations. Extension of their
use to the rest of PUPIL core is under consideration for a future releases.

– Java Memory
Each PUPIL worker creates a Java Virtual Machine (JVM), which is started with
an initial amount of memory (heap). The Java heap is where the objects of a Java
program live. It is a repository for current active java objects, dead objects, and
free memory. When any of those objects no longer can be reached from any
pointer in the running program, it is considered “garbage” and ready to be
cleaned. Sometimes, depending on system size, that memory could be insufficient
and more memory should be set. The JVM has three parameters to manage the
memory assigned to each java program.

- Initial memory

This is the initial and minimum size of the heap (MB). Some JVM developers
recommend that this value be set to the same size as the maximum heap size.

- Maximum memory

Figure 4.2. New simulation dialogue box

PUPIL User Manual

27

The default maximum heap size is a dynamic value determined by the amount
of free physical memory in the computer system. A good practice in order to
avoid paging is to limit the maximum heap size. This value will depend on the
size of the system under simulation and the available computer resources.
Usually the value should be less than 75% of physical memory in the
computer system.

- Stack size

Each thread in the JVM gets a stack. The number of possible threads is limited
by the stack size. If the stack size is too big you will run out of memory as
each thread is allocated more memory than it needs. However, for simulating
big systems the stack size should be increased in order to avoid memory
problems. PUPIL by default requests 16 MB of stack space, which should be
ample for most situations.

4.1.2 Calculation Units specification.
The main GUI panel (Figure 4.1) is divided in two sections. On the left is a list of the
CUs that are supported by the PUPIL system.

Note: CUs for which support is under development may show in the panel but not
be fully supported. Also, CUs will be listed even if not installed at your site.

On the right is the main window for the Jmol application (http://jmol.sourceforge.net)
that helps visualize the classical and quantum system read by PUPIL from the input files
discussed in §3.1. JMol has been embedded into the PUPIL GUI.

The CU panel is divided into three sections, one for each role that a CU can play in
the PUPIL multi-scale simulation.

You must specify one Molecular Dynamics (MD), one Force Generation (QM), and
one Domain Identification method for the simulation. All CUs involving MD and QM
methods have a common set of parameters to be assigned when selected:

– Executable
The user specifies the path and name of the binary that will be associated with the
CU. PUPIL will make a copy of the binary within the working directory for the
simulation; this copy will be executed during the simulation.

– Run application in parallel using MPI
This option controls whether this particular calculation unit is to be run in parallel
using MPI. It should not be used for CUs that rely on shared-memory (SMP)
processing, e.g., usual execution of Gaussian program.

– Number of MPI tasks to run
This option is available only if a parallel run using MPI has been requested (see
above). It specifies the number of MPI processors associated with the CU. If “Run
application in parallel using MPI” is enabled, this value should be an integer
greater than 1. A shell script template, pupil_paraRun.sh (from the PUPIL

http://jmol.sourceforge.net/

PUPIL User Manual

28

software), is used to build a proper script to start the QM MPI calculation. The
template is found in the $PUPIL_PATH/scripts/ directory. At each execution,
PUPIL enters appropriate values for all the internal environment variables
contained in the template. Prior to this, however, the user must:

1. Edit the template (pupil_paraRun.sh) to match the MPI package installed on
the target system, and

2. Copy the result into the simulation directory where the PUPIL starting run
shell script (pupil-run.sh) has been placed.

4.1.2.1 Force Generation (QM)

To obtain the quantum forces (Figure 4.3), some common parameters must be specified
for each CU involved in the simulation. This section is devoted to those parameters that
are general for any QM CU only. Later, the specific parameters for each specific CU are
given; see §4.1.2.3.

– Save output and error files at this interval (steps)
This option instructs PUPIL to
save the information written by the
QM CU to standard output and
standard error every so many steps.
If this option is left unchecked, the
QM CU output will be overwritten
at the start of each new QM force
evaluation.

– Use Periodic Boundaries
This option is needed only if the
classical system has 3D periodicity
in a parallelepiped or cubic MD
cell. Only orthogonal unit cell
vectors are allowed so far (no
hexagonal unit cells). If this option
is selected, PUPIL will translate
the atomic coordinates using the periodicity of the system, such that the quantum
zone ends up at the center of the unit cell for the QM calculation.

– Use cyclic QM (through RMI)
Warning! This option applies only to tightly coupled QM packages. If this option
is checked and the binary does not have the corresponding cycleQM behavior
compiled with a proper PUPIL interface, the simulation will fail in a deadlock.
This option tells the PUPIL Manager that the current CU will have the CycleQM
behavior.1-2 The binary will be put into execution once, and then used repeatedly.
It will be restarted only when the quantum zone changes.

Figure 4.3. Gaussian QM specification

PUPIL User Manual

29

– Chain Rule for pairs of link atoms
If this option is checked and the simulation has link atoms in the embedding zone
(see Embedding Rules, below), the Chain Rule will be applied to every pair of
link atoms to distribute the force over the link associated with them.

– Apply a post-QM Coulomb force correction to MM atoms
Most QM user packages do not compute the force exerted by the QM region on
the surrounding classical atoms (which typically are represented to the QM
program as fixed point charges). If this option is checked and the simulation has
point charges in the embedding zone (see Embedding Rules), two different ways
to obtain those forces will be used, depending upon which CU is used to perform
the simulation. The Gaussian CU, NWChem, and deMon2k obtain those forces
through the field at each point charge, whereas older versions of deMon2K (e.g.
v2.4.2) and NWChem (e.g. v6.1.1) obtain them through a simple integration
between the point charges and the electronic density calculated over the system
volume.3 This approximation attempts to calculate and correct this force
component, modifying the forces on the classical atoms associated with the point
charges.

When this option is checked the PUPIL Manager will use the whole classical box
to build the embedding zone to calculate electrostatic interactions in the real
space, but long-range electrostatics will not be calculated. This is to be compatible
with previous versions of PUPIL. However, the user might add long-range
electrostatics interactions at the simulation by means of the following check
boxes:

 - Apply PBC corrections between QM-QM atoms
 Interactions among QM atoms and all their virtual images will be
considered using the Ewald Summations approach.

 - Apply PBC corrections between QM-MM atoms
 Interactions between quantum particles and virtual images of point charges
 will be considered using the Ewald Summations approach.

 - Cutoff radius (direct)
This is the radius' cutoff to select environment point charges around the
quantum region in the Ewald Summations approach (direct space). This
value has to coincide with the neighboring distance to select point charges
in the embedding rules (see section §4.1.2.2.1). Since minimum image
convention is used, the user defined cutoff is limited to a maximum value
of the half the smallest box edge length. The default value will consider
the whole classical box in order to keep compatibility with previous
versions of PUPIL.

 - K max vector (reciprocal)
 This is the reciprocal-space cutoff value in the Ewald Summations
approach. It is an integer defining the summation range over all integer
 translations of the reciprocal lattice.

PUPIL User Manual

30

– Total charge of embedding region
Introduction of a link atom in the quantum zone can cause a charge neutrality

violation. To correct this, PUPIL will adjust the total charge of the embedding
region to the current value introduced by the user. This charge should be used to
impose charge neutrality to the whole system (qembed + qqm = 0).

Note: the charge introduced in this box is the net charge of the embedding
(classical) region only.

4.1.2.2 Domain Identification

This module is used to control QM/MM partitioning, where the inner QM region and the
external MM (classical) region are set. Currently, two kinds of Domain Identification are
allowed: Manual Region Specification and Domain Identification through an External
Program. The former is required to specify manually the QM region, the link-pairs
connecting the quantum and classical regions, and the embedding particles used as point
charges.

When no embedding rules are specified and no external DI program is running, the
entire classical system will be considered as a single quantum zone and will be mapped
following the default mapping rules between the classical and quantum kinds of atoms
(see §4.1.3), based on atomic numbers.

4.1.2.2.1 Manual Region Specification.

This dialogue box (Figure 4.4) provides the user with the option to assign, by means
of a specific set of rules, a fixed quantum zone and its embedding. The dialogue box
allows the user to distinguish among three Regions (or Zones), namely the QUANTUM,
CLASSICAL, and STATIC-CHARGE regions. Each particle must be assigned to one of
these three regions. Also, five different check-boxes allow the user to define all
atom/residues belonging to any of the three regions:

- Specification of the QM Region: Use this box to assign specific atoms or
residues directly to the QM region.

- Specification of the MM Region: Use this box to assign specific atoms or
residues directly to the MM (classical) or static charge regions.

 - Specification of the Fixed Link Pairs: Use this box for direct assignment of link-
pairs atoms that connect quantum and classical regions. The link-pairs defined at
this point will be kept fixed during all the simulation.

- Specification of Distance-Based Link Pairs: Use this box to define link-pairs
based on distances between quantum and classical atoms. This assignment will be
re-evaluated at each simulation step.

PUPIL User Manual

31

- Specification of Distance-Based Residues: Use this box to assign residues
outside the QM region to the MM or static charge region using criteria of distance
from any particle in the QM region.

The PUPIL GUI dialogue allows the user to apply four kinds of basic rules to atoms
and/or residues:

– Direct atom/residue type assignment
This rule is used to define a relationship between a classical particle (identified by
its atom number) and the particle associated with it in the quantum calculation
(i.e., a point charge or a full QM atom), on a particle-by-particle basis. The user
must specify here all particles that will not be accounted for correctly by any of
the more general rules. This definition may assign the atom as a quantum atom or
as a member of the first embedding layer, referred to as CLASSICAL on the
dialogue boxes, or the second embedding layer, referred to as STATIC-CHARGE
(but no farther). Also, the particle must be given a quantum-atom type or specified
as a point charge.

Residues with both quantum and classical parts cannot be fully assigned to either
the QM zone (“QUANTUM”) or either of the two classical zones
(“CLASSICAL”, “STATIC-CHARGE”) defined below. As a result, all atoms in
these residues, except the classical counterparts of possible link atoms, must be
specified individually here, and assigned to the corresponding point charge or QM
atom.

When the MD CU has an option to describe sets of atoms, (e.g., “molecules” in
DL_POLY or “residues” in AMBER), PUPIL groups those sets as residues. A
direct relationship is established by default between any classical residue (defined
by its residue number) and its associated quantum particles. The default mapping
may be overridden by the user to provide rules for mapping between the classical
atom types belonging to a specific residue and the corresponding quantum atom
types (see §4.1.3).

 Atom/residue selection. In all cases the user can choose between selecting
 a set of atoms (residues) by mean of a range specification, or the user can
 choose a single atom (residue) to be assigned at any of the QM/MM
 partitioning region. The range syntax has to be specified with an
 “hyphen” between the minimum and the maximum of involved atom
 numbers (residue numbers).

In the Ubiquitin example shown (Figure 4.4), all particles selected by
either atom range and/or residue range, have a default QM type or MM
type. Only in the case of a single-atom assignment is it mandatory to
specify the corresponding mapping type (QM or MM type).

PUPIL User Manual

32

– Fixed Link Pairs.
This rule allows specification of fixed link-pairs to the quantum zone during the
whole simulation. Link pairs are necessary when covalent bonding is defined
between atoms of different regions. The user must identify the atom in the
quantum region (QM-host) and its counterpart in the classical region (MM-host).
The link-atom is the atom with which to replace the MM-host in the quantum
calculation in order to saturate dangling bonds. Also, the user must assign a new
bond distance and new QM type for the defined link atom.

For example, the quantum zone depicted in Figure 4.1 (right hand side),
representing the quantum region of the Ubiquitin simulation, shows two closing
residues. Each of those residues is connected to two other residues in the protein,
with the cycle of the P19 residue being cut. Thus, there are six link atoms in total.
The screenshot in Figure 4.4 shows the assignment of those six link atoms. Since
the residues connected to the quantum zone are neither completely quantum nor
completely classical, all remaining atoms of those residues must be specified in
the upper left-hand area of the dialogue box (Specification of QM Region). This
distinguishes them from the remaining classical atoms, which will be assigned
later in the right-hand area of the dialogue box (Specification of MM Region). All
atoms belonging to this residue that are not assigned yet will be mapped as static
point charges in the embedding region of the QM/MM partition.

– Distance-Based Link Pairs.
This rule has a different philosophy from that of the fixed link-pair assignment
rule. The distance-based rule will assign all particles as link-atoms that have a
specific type (MM type) and are located inside a user-defined shell
(“neighborhood”) around the nearest, already-assigned QM zone. Thus, all the

Figure 4.4. The dialogue box for specifying the embedding rules and assigning atoms to classical or
quantum zones.

PUPIL User Manual

33

classical particles that

(i) have a specific atom type defined in the “MM atom type” column, and

(ii) are separated from any particle belonging to the quantum region by a
distance within the limits defined by the “rMin” and “rMax” column,

will be assigned as link-atoms together with their closest QM-host, and will
substitute the MM-host in the quantum calculation with the new “Link QM type”
defined on the fourth column. Also, the user must assign a new bond distance
between the defined link-pair.

– Neighboring residue type assignment.

This is a more general rule to map classical particles belonging to a specific
residue to quantum particles based on the distance between the residue center of
mass and the nearest, already-assigned quantum particle. This field can be used to
assign any particles that have not yet been defined in the previous boxes. The
assignment is done by residue type and distance. Thus, any particle that:

(i) belongs to one of the residue types listed in the “MM residue type”, and
(ii) falls within the distance range defined by “rMin” and “rMax”, and
(iii) has not been defined in any of the previous rules,

is assigned to the embedding zone designated in the “zone” column.

4.1.2.2.2 Saving/Loading Partitioning Rules

This capability allows the user to save partitioning rules to an external file in order to
create, transfer, and edit them easily between different simulations.

- Loading rules set.

 To load a set of rules into the Partitioning Rules Editor dialogue box, just
open the file by clicking the “Load” button and look for a txt file format
containing the new set of rules. When the new set of embedding rules is
loaded, the existing rules in the Partitioning Rules Editor dialogue box are
flushed and replaced by the new set. The changes will become permanent after
accepting the dialogue box button.

- Saving rules set.

 To save the rules in the current Partitioning Rules Editor dialogue box,
click the “Save” button and a new txt file will be stored with the name and in
the location that the user chooses.

PUPIL User Manual

34

- Editing an external file of partitioning rules.

The partitioning rules file has a txt format, and can be created and edited
outside the PUPIL GUI. The file structure is made by grouping partitioning
rules in the three allowed zones for PUPIL simulations: quantum particles
(QPR), classical particles (CPR), and static charge particles (SCR). The blocks
of rules are defined by the directive #block … #endblock:

 #block “Name_of_partition”

 #endblock
Allowed partition names: QPR, CPR, and SCR.
It is mandatory that any partition rules file must include definitions of all

three partition rule blocks, independent of whether any block is empty or not.

There are four types of partitioning rules that can be defined inside the
above-cited blocks of rules.

• Set Rules (SETR)

This rule allows specification of a set of UNITs (ATOM or RESIDUE)
belonging to one of the partition zones: quantum, classical, and static charges

Syntax:

 SETR {ATOM | RESIDUE} ini_unit_number[- end_unit_number]

 The ATOM or RESIDUE units from ini_unit_number through the
end_unit_number (the latter being optional) will be assigned to the specific
block partition in which this rule is defined. The new type of particle will be
assigned by default. So, on the QPR block only QM_types are considered,
whereas on the CPR and SCR blocks, only MM_types (as point charges) are
considered.

Examples:

 SETR ATOM 300-302

 SETR RESIDUE 57

Syntax:

 SETR ATOM unit_number {QM_type | MM_type}

PUPIL User Manual

35

 A specific ATOM unit is allowed to be assigned as a given QM_type
(quantum zone only) or MM_type (as a new static charge on the embedding
zone).

Examples:

 #block QPR

 SETR ATOM 902 C

 #endblock

 #block CPR

 SETR ATOM 310 P19.HB2

 SETR ATOM 885 L56.N

 #endblock

where C references a quantum type of particle already defined in the input
file of the quantum mechanics program and both P19.HB2 and L56.N are
classical particles (residue.atom_name) defined from the input file of the
molecular dynamics program.

• Fixed Link Pair Rules (FLPR)

This rule allows specification of a link pair that connects the quantum and

classical zones and is fixed during the whole simulation. This is the most
common link-pair definition used in QM/MM simulations.

This rule is only allowed to be defined in the classical particles block
(CPR).

Syntax:

 FLPR QMHost unit_number MMHost unit_number QMLinkType
QM_type new_distance

The QMHost ATOM unit and its corresponding MMHost ATOM unit,
through which the classical and quantum zone respectively are to be
connected, are defined. The new particle type in the quantum calculation of
MMHost is specified as QM_type. It will be placed at the new_distance from
QMHost along the bond direction between QMHost and MMHost.

Examples:

 FLPR QMHost 316 MMHost 318 QMLinkType H 1.0

PUPIL User Manual

36

 FLPR QMHost 300 MMHost 289 QMLinkType H 1.0

where a new link-pair is made by atom 316 in the quantum zone and atom
318 in the classical zone. The latter will be substituted by a Hydrogen atom
placed 1.0 Angstrom from the QMHost along the bond that crosses quantum
and classical zone. Similarly, the second example defines another pair-link,
this one involving atom 300 and 289, which reside in the quantum and
classical zone, respectively.

• Neighboring Rules (NBHR)

This rule allows specifying a set of UNITs (ATOM or RESIDUE)

belonging to any of the CPR and SCR blocks which is distance-based to any
of the currently defined quantum particles.

Syntax:

 NBHR RESIDUE MM_type min_distance max_distance
All classical RESIDUE units on the system which are holding a MM_type,

and are located between min_distance and max_distance to any of the already
defined quantum particle, will be taken as a part of the CPR and SCR block.
All residue atoms defined by this rule will be mapped by default to its
MM_type as a point charge.

Example:

 NBHR RESIDUE ALA 0.0 200.0

where all ALA residues on the system that are placed up to 200.0 Angstrom
from any quantum particle will be mapped to its default of static charge
particles, following the already-defined default KeyMM/KeyQM mapping
table (see section §4.3.1).

• Neighboring Link Pair Rules (NLPR)

This rule allows specification of a distance-based link pair which it

connects the quantum and classical zones. It is recalculated at each simulation
step.

PUPIL User Manual

37

Syntax:

 NLPR ATOM MMHostType MM_type min_distance max_distance
QMLinkType QM_type new_distance

All classical atoms in the system which have an MM_type and are located
between min_distance and max_distance to any of the already-defined
quantum particles, will be taken as MMHost on a new pair-link. A new set of
pair-links will be created at each simulation step between those quantum and
classical atoms that follow this rule, with the MMHost particle substituted by
the newly defined QM_type, and placed at the new_distance along the bond
between QMHost and MMHost.

Example:

 NLPR ATOM MMHostType ALA.C 0.0 1.5 QMLinkType H 1.0

where all ALA.C atom types will be taken as MMHost in a new pair-link
made of this atom and the one on the quantum zone that has a distance
between 0.0 and 1.5 Angstrom. The new QMHost will be placed as a
Hydrogen atom at 1.0 Angstrom upon the bond crossing between the quantum
and classical zones.

Next we show the rules defined from the Ubiquitin test as a general
example of the Partitioning Rules File:

#block QPR

 SETR ATOM 300-302

 SETR ATOM 312-317

 SETR ATOM 902-903

 SETR ATOM 915-916

 SETR RESIDUE 57

#endblock QPR

#block CPR

 FLPR QMHost 316 MMHost 318 QMLinkType H 1.0

 FLPR QMHost 300 MMHost 289 QMLinkType H 1.0

 FLPR QMHost 302 MMHost 303 QMLinkType H 1.0

PUPIL User Manual

38

 FLPR QMHost 312 MMHost 309 QMLinkType H 1.0

 FLPR QMHost 902 MMHost 887 QMLinkType H 1.0

 FLPR QMHost 915 MMHost 917 QMLinkType H 1.0

#endblock CPR

#block SCR

 SETR RESIDUE 1-56

 SETR RESIDUE 58-76

#endblock SCR

4.1.2.2.3 Domain Identification through an External Program

 This option allows specification of a quantum region by use of a program external
to the PUPIL package as another CU which interacts with the simulation manager of
PUPIL similarly to the externals MD and QM programs. This functionality is useful
when specification of the quantum region by means of the usual manual region
specification rules is too complicated. So, the external Domain Identifier should interact
with the Simulation Manager by exchanging information as described in the
bibliography.1 The necessary information to be supplied by external Domain Identifier to
PUPIL interface is the following:

- The total number of quantum particles

- A list containing those atom numbers from the MM particles list that should be
made quantum.

- The number of different actives zones involved in the simulation

- An ordered list with a specific register for each active zone (number of atoms,
multiplicity, total charge, and the assigned number of resources (CPU’s) in a
given quantum region).

 Figure 4.5 shows the dialogue box where are set the simulation parameters using
an external program that has the
responsibility to identify the main
quantum region. In order to facilitate
further implementations, the stubDI
application (compiled by default within
the PUPIL package) implements a very
simple external Domain Identifier as
example, which also supports multiple
QM regions for testing prototypes of
maz-QM/MM MD approach5 (see h2o
tests).

Figure 4.5 The dialogue box for specifying the

quantum region through an external program.

PUPIL User Manual

39

- Steps between Dom. Ident. calls.
This option specify the interval of MD steps that the Pupil Manager should
wait between two different calls to the external Domain Identifier in order to
get an updated list of atoms belonging to the quantum region.

- Number of QM regions (QMWorkers)
Starting in version 3.1 of PUPIL, multiple quantum regions are allowed within
a unique QM/MM-MD simulation, (multiple active zones QM/MM MD
approach, maz-QM/MM MD).5

In order to activate multiple active zones the user has to specify the number of
different quantum regions involved in the current simulation (by default is
deactivated by assigning a value of 1). Pupil Manager will set up one
additional and independent QMWorker for each one of the quantum regions to
be treated.

- Main input
The path to the input file for the external Domain Identifier program should be
declared in this box in case that it will be necessary. The input file will be
copied on the execution directory of the program at run time.

- Partitioning rules
The external Domain Identifier will send all atom numbers from the
simulation MM atom list that belongs to the inner quantum region only. The
user must specify the embedding region by means of the Partitioning Rules
Editor by clicking on the Partitioning Rules button. Usually, in this kind of
domain identifier programs, the quantum region will change on the fly, and
then the neighborhood rules (distance-based rules) have to be used instead of
direct atom/residue/link-pair type assignment rules.

The h2o test supplied with PUPIL v3.1 can illustrate the maz-QM/MM MD approach5 by
means of running an example with two active zones (two independent water molecules).
The test involves AMBER and DLPOLY programs with several QM programs to run a
simple maz-QM/MM MD simulation. The tests should be executed from the tests
directory on the installation directory. In case of the tandem Gaussian and Amber as
external packages:

$ cd /installation/path/of/PUPIL

$ ctest -VV -R h20-amber-gaussian-stubDI

Note: the maz-QM/MM MD implementation in PUPIL is still in beta phase. In
order to run this kind of simulation the user has to have installed the secure shell
protocol (ssh) and the login through ssh without password, especially when the
simulation is running using processors located in different nodes.

PUPIL User Manual

40

Table 3 External QM and MM Codes that currently interfaced to PUPIL
 Electrostatic

Embedding
Start-Stop
Behavior

Cyclic
Behavior

Tightly coupled
Interface

MPI execution

QM codes
deMon2k √ √ √
Gaussian √ √ -a,b
NWChem √ √ √
Siesta √ √ √ √
Orca √ √ -a
MOPAC √ √

MM codes

AMBER √ √
DL_POLY (classic) √ √

a Conventional parallel execution using threads.
b Parallel execution using LINDA software.

4.1.2.3 QM Applications Currently Implemented

Table 3 lists all possible QM and MM codes currently interfaced to PUPIL in a quick
view of its main architectures. More details can be found in a recent PUPIL review.4
Thus, the QM force generation applications currently implemented to run with the PUPIL
system are:

– SIESTA
SIESTA7 is a computational chemistry and materials package that implements
density functional theory (DFT). It has a specific interface made to work with the
PUPIL system in both Start-Stop and CycleQM modes,2 §2.4.1 and §2.4.2). The
main input file (.fdf) has to be specified and the remaining files (.psf) must be
added in a general list box with the label “Other required files :”(See bottom
Figure 4.6) After compilation of the SIESTA source code, patched to include the
CycleQM capability, the siesta binary recognizes a new keyword in the .fdf input
file that controls the CycleQM behavior. Thus, to activate CycleQM the user must
include the following line in the .fdf file:

MultiScale .true.

– Gaussian
Gaussian program8 as a general and widely used computational chemistry
package that has many QM methods. This package works with the PUPIL system
in Start-Stop (SS) mode.3

Classical (embedding) particles are represented in Gaussian as immovable point
charges through the CHARGE and NOSYMM keywords. PUPIL automatically
provides these keywords to Gaussian, along with a list of the classical particles
and their charges. GAUSSIAN, can provide the electric field at the locations of
the point charges, which can be used to calculate the electrostatic force exerted on
the classical particles by the QM region. Beginning with PUPIL version 1.3, this
force correction is performed using Gaussian. The Prop=(Field,Read) keyword is

PUPIL User Manual

41

given to Gaussian. That requests a calculation of the electrostatic field supplied by
the quantum region at a list of points in space. PUPIL supplies this list, using the
coordinates of the classical particles, and calculates the forces from the relevant
entries in the Gaussian log file. The PUPIL part of this calculation runs as a single
thread, and completes within seconds.

– deMon2k
deMon2k9 is a DFT code which uses robust Coulomb fitting for speed and
supports calculation of a large variety of molecular properties for many
functionals. In the same way that classical (embedding) particles are represented
in Gaussian as immovable point charges, when deMon2K is used as the QM
program to generate forces on the quantum zone, a similar implementation is
carried out. The newer versions of deMon2K save a file with all the forces exerted
on the classical particles by the QM region. PUPIL automatically provides the
required keywords (QM/MM CHARM) for that embedding to deMon2k, along
with a list of the classical particles and their charges. Thus, at the end of each step,
the forces to derive the QM/MM coupling term will be read.10

Older version of deMon2k (i.e., v 2.4.2) ignores the electrostatic force exerted on
the classical particles by the QM region. Therefore, for a multi-scale simulation, a
quantum zone – point charge force correction is necessary (see §4.1.2.1).The
older methodology uses the MPI-enabled PUPIL utility pcforce, which must be
provided in the “Other required files” list (see Figure 4.6). This program
calculates the forces on those classical zone atoms due to the QM zone atoms,
something not ordinarily done in molecular QM codes that support classical-array
embedding. In the case of deMon2K, the QZ-PC correction calculation was done
via representation of the electron density on a dense point grid using the so-called
“RHO” file (see the deMon2k manual for more details). PUPIL prepares the input
file for the pcforce external program, including only the points at which the
absolute value of the charge density is greater than the charge density threshold
(see Figure 4.6) and next paragraph. While this process is computationally
intensive and time-consuming, significant speed-up may occur if pcforce is run
with several processors (more than 2).

- Charge density threshold

A deMon2k RHO file is used to obtain the QM electronic density at each
MD/MM step. The RHO file is a text file containing an approximate description
of the charge distribution of the QM region. It uses a regularly spaced grid, each
with a partial charge (similar to the Cube file from Gaussian program). Those
grid-point charges are, in turn, used to calculate the electrostatic force exerted by
the QM region on MM atoms. It is common for many of the grid-point charges to
be negligible, and calculation of the electrostatic force is faster if these points are
skipped. The charge density threshold is the charge level below which a grid point
will be skipped. A typical value for the charge density threshold is 1 × 10–6.

PUPIL User Manual

42

– Number of grid divisions in RHO file

These three boxes (labeled as X:, Y: and Z: in Figure 4.6) allow one to set the total
number of divisions along the three grid axes to build the RHO file. The number
of divisions determines the accuracy with which the total number of system
electrons is recovered by integrating the discretized charge density. Obviously an
excessively large number of divisions will lead to excessive demand on
computing time and resources. The user must find an appropriate number of
divisions to allow a balance
between system size and available
resources.
Warning! Both
pupil_paraRun_demon2k.sh and
pcforcempi.sh should be placed in
the simulation working directory,
together with the XML input, in
order to build the correct shell
script to start up the parallel
execution of the deMon2k and
pcforce programs, respectively.
Version Note: For compatibility
reasons, the deMon2K interface
only allows the same number of
divisions along each of the three
axes of the RHO file.

– Other required files

This text box (see Figure 4.6) allows the user to specify other required programs
and files. In particular, the program pcforce can be added here; by use of the “+”
button. Pcforce is a utility which is shipped with current version of PUPIL and
which produces an output file with the forces over each point charge involved in
the classical embedding over the QZ. (see §4.1.2.3). Also the BASIS and AUXIS
file should be named in this box to carry out deMon2K calculation properly. Any
other required file for deMon2K should be placed here as well.

– NWChem
Version 7.0.2 of the NWChem11 computational chemistry package is supported in
the current PUPIL interface; the older versions 6.1.1 and, 6.3 versions12 are also
supported but were no tested for PUPIL v4.0. The main difference between both
versions is the way that classical embedding (point charges) is defined in the input
file and how the QM/MM coupling term are derived from the quantum
calculations.

Figure 4.6 DeMon2k QM specification

PUPIL User Manual

43

Classical (embedding) particles are represented in NWChem as immovable point
charges through the BQ keyword. PUPIL automatically provides these keywords
to NWChem, along with a list of the classical particles and their charges.
NWChem as well as Gaussian ignores the electrostatic force exerted on the
classical particles by the QM region. Therefore, for a multi-scale simulation, a
quantum zone – point charge force correction is necessary. Then, each version has
a different treatment from the interface point of view:

- 6.3 and upper versions
 This version of NWChem saves a file with all the forces exerted on the classical
particles by the QM region. PUPIL read the forces in order to derive the QM/MM
coupling term at each step.

- 6.1.1 version
The implementation for this previous version of NWChem is similar to that for
deMon2k. However, the quantum zone - point charge force correction is
calculated through the external program named Pcforce (supplied within the
package). NWChem program builds a Cube file to represent the electron density
on a dense grid (80 × 80 × 80 points) by default. PUPIL automatically provides
necessary keywords to NWChem, along with a list of the classical particles and
their charges (see Figure 4.7).

- Charge density threshold
The value given to this parameter allows the neglect of many of the grid-
points in the Cube file. (See more details in previous deMon2k section). A
typical value for this parameter is 1 × 10–6.

- Number of grid divisions in Cube file
Similar to the deMon2k interface implementation; see above. However, in this
case the number of divisions refers to the three grid axes to build the Cube file
from the NWChem CU.

- Other required files
Pcforce program should be
named in this box. (See
more details in previous
deMon2K section)

Warning! Both templates
pupil_paraRun.sh and
pcforcempi.sh should be placed
in the simulation working
directory, together with the
XML input file, in order to build
the correct shell script to start
the parallel execution of the

Figure 4.7 NWChem QM specification

PUPIL User Manual

44

NWChem and Pcforce programs, respectively.

– ORCA
ORCA13 is an ab initio, DFT and semiempirical SCF-MO package designed as a
general purpose tool for quantum chemistry with specific emphasis on
spectroscopic properties of open-shell molecules.

Classical particles are represented in ORCA as immovable point charges
(electrostatic embedding) and the QM program automatically generates forces on
both quantum and classical zones when appropriate keywords are set up by
PUPIL interface considering electrostatic embedding.

Warning! The ORCA_PATH environment variable has to be set with the correct
ORCA binary path in order to run all orca tests.

– MOPAC 2016
MOPAC14 (Molecular Orbital PACkage) is a semi-empirical quantum chemistry
program based on Dewar and Thiel's NDDO approximation.15 In this program
classical particles are represented as immovable point charges. Specifically, the
QM program incorporates the point charge effect into semi-empirical QM/MM
Hamiltonian by adding the interaction energy of an electron with the electrostatic
potential created by MM atoms (point charges) to the one-electron diagonal
elements of Hamiltonian. MOPAC implementation requires electrostatic
potentials on QM atoms from all MM atoms (point charges) which are supplied
by the PUPIL interface setting up the appropriate keywords. Also, the necessary
electrostatic forces exerted between classical and quantum particles are derived by
the PUPIL interface using the charges provided by MOPAC (ESP charges)
according to the MM force-field formalism.16

4.1.2.4 Molecular Dynamics (MD).

The CU that controls the time evolution in the simulation is the Molecular Dynamics unit.
At each MD step, the MD unit asks PUPIL for the forces on the quantum particles, and
those forces are evaluated through the PUPIL interface. There is only one common
parameter to set for all the MD Calculation Units.

– MD Steps to extract result.
This field determines the frequency (in MD steps) at which the PUPIL Manager
will take a snapshot of the system and store all the system coordinates and other
internal variables in memory to dump, later on, into the output.xml or other
intermediate files.

4.1.2.5 MD Applications Currently Implemented

The MD packages that currently interface with PUPIL are DL_CLASSIC (DL_POLY)
and Amber 16 (See §2.4.2):

PUPIL User Manual

45

• DL_CLASSIC, version 1.9 & 2.0 (DL_POLY)17
The interface included in this package connects with the corresponding PUPIL
library in serial execution.2 A standard QM/MM scheme of electrostatic
embedding has been incorporated from the version 3.0 of PUPIL. The user must
build the DL_CLASSIC binary by means of patching the original source code; for
instructions, see §2.4.2.1

• Amber, versions 10 up to 22
Starting with Amber1018 up to now, the source code has the modifications needed
to interface properly with PUPIL in a standard QM/MM scheme of electrostatic
embedding.3 The user must build (or have available) the corresponding
sander.PUPIL binary; for instructions, see §2.4.2.2.

The Amber input file does not know about the QM/MM manager. The QM/MM
controls in Amber must not be invoked because all the QM/MM directives are
introduced externally.

Electrostatic embedding directives for both packages are available through PUPIL
packages and QM worker input files:

• A correction to the forces on point charges must be applied3 (see §4.1.2 Apply
a post-QM Coulomb force correction to MM atoms)

• The quantum and embedding zones are defined through the PUPIL Graphical
User Interface, as well as the link atoms. (see §4.1.2.2)

• The method and level of approximation for the QM calculation should be
specified in the QM package input file (e.g., a Gaussian input file). This file is
loaded into the GUI and incorporated into the PUPIL XML input.

4.1.2.6 Domain Identification (DI)

Partitioning of the system into regions of quantum and classically generated forces can be
done using a set of simple rules (discussed above) or through an external program that
analyzes the system variables to determine where the quantum zone is located. In the
PUPIL architecture, external programs that perform this function are called Domain
Identification (DI) CUs. The user has the option to call a DI CU several times during the
simulation. This opens the possibility of a dynamic treatment for the quantum zone.

• Steps to Dom. Ident.
This parameter tells the Manager how many MD steps are to be taken between
two DI calls.

Version Note: At present, no DI interfaces are provided. However, a stub program
is supplied as an example of how this functionality interacts with PUPIL. The user
may use this stub as a template to create his/her own domain identifier.

PUPIL User Manual

46

4.1.3 KeyMM/KeyQM Mapping
Note: This mapping is applied only to the atoms not defined in the embedding rules
described above (see §4.1.2.2).
As discussed in the previous sections, the parsers in the PUPIL GUI extract the kinds of
atoms associated with the classical (KeyMM) and the quantum (KeyQM) systems. A
simple mapping between the two kinds of particles is done by the PUPIL system using
the atomic number, as shown in Figure 4.8. This default solution may not be sufficiently
general for all user needs. For this reason, the KeyMM/KeyQM mapping panel allows the
user to change the default mapping between classical and quantum particle identifiers.

The key used in the mapping may be different depending on internal details of the CU
in which the key will be used. The basic convention is as follows:

– Classical particles: {residue}.
The partition between residue and classical particle (e.g. Amber uses WAT.H1,
ALA.CA …) or molecule and atom (e.g. DL_POLY uses SILICON.SI) will be
kept in the keyMM and extracted from the input files. To define a custom
partitioning of the classical system, a more specific mapping between classical
and quantum kind of atoms is allowed.

– Quantum particles: [PC.][{residue}.]
The quantum keys come from two sources: The first source is the QM CU input
files. They yield the user-defined quantum atoms and the point charges (PC)
associated with any classical particle from the MD input files. All point charges
have by default a “PC.” prefix before the normal key (i.e. PC.0.36). They will also
have a residue field if it is supplied by the MD input file (i.e. PC.ALA.CA or
PC.SILICON.SI).

Warning! Every time that the user parses
the QM input files, a new mapping
between keyMM and keyQM is created
automatically from scratch and all the
mapping data stored previously is
discarded. After each and every parsing,
the user must remap all the key
associations not automatically generated
by default or by the embedding rules. A
sanity check always should be done to the
KeyMM/KeyQM default mapping.

The default PUPIL mapping works in
the following way: Every pair
KeyMM/KeyQM mapping is assigned by
atomic number first. If several KeyQM are
defined for the same atomic number, the
first KeyQM in alphabetical order is
assigned. For example, from

Figure 4.8 Default KeyMM/KeyQM Mapping

PUPIL User Manual

47

QMAtomLabel.BasisSet with Gaussian03 inputs, one could have hydrogens with two
basis sets: H.BS1 and H.BS2. Or there could be several MM labels for a single atomic
weight. The result of this assignment rule (atomic number, then alphabetic) can be
incorrect, depending on the particle labeling and the user’s intentions. The user must
check this mapping and edit it manually if needed. Use the KeyMM/KeyQM PUPIL
window interface (see Figure 4.8).

4.1.4 Show Simulation Tree
This panel has the purpose of showing the internal memory structure of the PUPIL
Domain and all its values. It should be the same structure as the XML file produced by
the GUI with only minor naming differences. The panel allows the user to see which
values are stored in memory and analyze the parsed commands. Another way to obtain
this same information is to view the XML file using a general browser.

4.2 Results
There is an option to tell the PUPIL system to store intermediate results from the
simulation. This capability is a little primitive in this release, but will be developed in
future releases. The basic idea is to monitor
the results of the simulation. That could be
done through the output files of each CU or
through a log file from data being
transmitted between CU workers. The
option that is implemented in this release
allows extraction of some data from the
QM CU when it works in Start-Stop mode.
Data extraction in CycleQM mode is not
implemented yet because of its significant
performance impact.

4.2.1 QM Simulation Summary
This GUI panel (Figure 4.9) allows the user
to obtain a rapid view of the quantum
energy obtained at each step. The data can
be exported to a *.csv (Comma Separated
Value) file format easily with the “Write
file” button option situated at the bottom of
the panel.

4.2.2 Extract xmol file
The coordinates of the quantum zone are stored at intervals depending on the value of
MD Steps to extract result (See Molecular Dynamics in §4.1.2). With this option, the
coordinates can be stored in XML format.

Figure 4.9 Results

PUPIL User Manual

48

5. XML SIMULATION FILE
The XML (EXtensible Markup Language) format was designed to describe and store
structured data. Simulation data typically is very structured, with complex relationships
among input files of CUs, simulation parameters, intermediate and final results and data
parsed and/or extracted from CU input files. Therefore, a consistent and comprehensive
way to store all that information is to use an XML file. The PUPIL GUI helps the user
build this simulation file.

In this section we list the principal XML elements included in the input/output
Simulation file.

5.1 The SIMULATIONROOT Element
The main element is the root element (SIMULATIONROOT). It has four sub-elements.
Three of them are described within this subsection; a fourth, the SIMULATION element,
is described below (see §5.2).

5.1.1 The ATOMDICTIONARY Element
This sub-element stores all the types of quantum atoms that PUPIL holds. The
identification for the kind of atom is a serial number <idUnit>, but there is a direct
relationship with the keyQM that is parsed from the QM CU input file and stored as a
<label> element.

5.1.2 The RESIDUEDICTIONARY Element
This sub-element stores all the types of residues needed in PUPIL for the calculation. The
internal identification for the kind of residue is a serial number, marked as <idUnit>, but
there is a direct relationship with the label, which is parsed from the MD Calculation Unit
input file and stored as a <label> element. Each residue stores also all the keyMM
particles belonging to it. Every atom particle belonging to a given residue must have a
different keyMM.

5.1.3 The KEYMM Element
This sub-element stores the default mapping between the keyMM and the keyQM. The
keyMM values are obtained from the MD CU input files, and the keyQM values from the
QM CU input files.

5.2 The SIMULATION Element
The simulation element is organized as a number of jobs. Each job belongs to a specific
CU and stores all the variables necessary to run it. The job is stored as a nested sequence
of records from bottom upward, in which the most specialized records contain the more
general records. For instance, an AMBERMDJOB element contains an MDJOB element,
which in turn contains a JOB element. First we find the more specialized values and, as
we go down the tree branches, we find the more general stored values.

Continuing the example, an AMBERMDJOB element is one of the most specialized
elements from the SIMULATION element, containing an MDJOB sub-element and a

PUPIL User Manual

49

number of other sub-elements specific to AMBER calculations. An MDJOB sub-element
contains a JOB sub-element and a number of other sub-elements common to MD jobs in
general. Finally the JOB sub-element of MDJOB contains elements for storing the most
general simulation variables. An example of a simulation XML file is at the end of this
document, in §5.3.

Within a SIMULATION, each job corresponds to a User Package that will be part of
the multi-scale simulation. There is a general rule for job names, which must be respected
in order to avoid internal problems in the execution of the Manager and the PUPIL
workers. All job names have a common root JOB and a pair of prefixes defined by
protocol. First, a generic prefix must be added; this is one of MD, QM, or DI, depending
on whether the package acts as a Molecular Dynamics, Quantum Mechanics, or Domain
Identification CU, respectively. This combination is prefixed, in turn, by the name of the
specific User Package (such as AMBER) that will be used in the simulation with its
PUPIL worker. Thus, the User Package name may be found at the beginning of the
element name. An example of such an element name is AMBERMDJOB. This prefixing
protocol is independent of the way that the CU will interact with PUPIL (Start-Stop or
CycleQM mode).

5.3 Example XML input file
This section presents an incomplete XML input file, containing entries suitable for an
MD simulation using AMBER.

<?xml version=”1.0” encoding=”utf-8” ?>
<SIMULATIONROOT>

<ATOMDICTIONARY>
...
<ATOM>

<UNIT>
<unitTypeCode>4</unitTypeCode>
<label>O</label>
<mass>15.9994</mass>
<charge>0.0</charge>

</UNIT>
<atomicNum>8</atomicNum>

</ATOM>
...

</ATOMDICTIONARY>
<RESIDUEDICTIONARY>

...
<RESIDUE>

<UNIT>
<unitTypeCode>1</unitTypeCode>
<label>ACE</label>
<mass>56.046</mass>
<charge>0.0</charge>

</UNIT>
<mmAtomKeys>

<atomUnit>ACE.HH31</atomUnit>
<atomUnit>ACE.CH3</atomUnit>
<atomUnit>ACE.HH32</atomUnit>
<atomUnit>ACE.HH33</atomUnit>
<atomUnit>ACE.C</atomUnit>
<atomUnit>ACE.O</atomUnit>

</mmAtomKeys>
</RESIDUE>

PUPIL User Manual

50

...
</RESIDUEDICTIONARY>
<MMKEY>

...
<mmKey>

<key>ACE.O</key>
<QMkey>4</QMkey>

</mmKey>
...

</MMKEY>
<SIMULATION>

...
<jobs>

<AMBERMDJOB>
<MDJOB>

<JOB>
<jobID>AmberMDJob3</jobID>
<exe>

<path>../../../bin/sanderLinux</path>
</exe>
<useMpi>false</useMpi>
<numMpiTasks>0</numMpiTasks>
<files>

<PUPILFILE>
<fileID>mdin</fileID>
<path>../data/mdin</path>
<sections></sections>

</PUPILFILE>
<PUPILFILE>

<fileID>ala3.parm7</fileID>
<path>../data/ala3.parm7</path>
<sections></sections>

</PUPILFILE>
<PUPILFILE>

<fileID>ala3.inpcrd</fileID>
<path>../data/ala3.inpcrd</path>
<sections></sections>

</PUPILFILE>
</files>
<coordinates>

…
</coordinates>
<residues>

…
</residues>

</JOB>
<stepSaveInterval>2</stepSaveInterval>

</MDJOB>
<amberfiles>

<PUPILFILE>
<fileID>mdin</fileID>
<path>../data/mdin</path>
<sections></sections>

</PUPILFILE>
<PUPILFILE>

<fileID>prmtop</fileID>
<path>../data/ala3.parm7</path>
<sections></sections>

</PUPILFILE>
<PUPILFILE>

<fileID>inpcrd</fileID>
<path>../data/ala3.inpcrd</path>
<sections></sections>

</PUPILFILE>
</amberfiles>

</AMBERMDJOB>

PUPIL User Manual

51

...
</jobs>

</SIMULATION>
</SIMULATIONROOT>

6. BIGLIOGRAPHY

1. Torras, J.; Deumens, E.; Trickey, S. B., Software Integration in Multi-scale
Simulations: the PUPIL System. J. Comput. Aided Mater. Des. 2006, 13 (1-3), 201-212.

2. Torras, J.; He, Y.; Cao, C.; Muralidharan, K.; Deumens, E.; Cheng, H.-P.;
Trickey, S. B., PUPIL: A systematic approach to software integration in multi-scale
simulations. Comput. Phys. Commun. 2007, 177 (3), 265-279.

3. Torras, J.; Seabra, G. d. M.; Deumens, E.; Trickey, S. B.; Roitberg, A. E., A
versatile AMBER-Gaussian QM/MM interface through PUPIL. J. Comput. Chem. 2008,
29 (10), 1564-1573.

4. Torras, J.; Roberts, B. P.; Seabra, G. M.; Trickey, S. B., Chapter One - PUPIL: A
Software Integration System for Multi-Scale QM/MM-MD Simulations and Its
Application to Biomolecular Systems. In Advances in Protein Chemistry and Structural
Biology, Tatyana, K.-C., Ed. Academic Press: 2015; Vol. Volume 100, pp 1-31.

5. Torras, J., Multiple active zones in hybrid QM/MM molecular dynamics
simulations for large biomolecular systems. Phys. Chem. Chem. Phys. 2015, 17 (15),
9959-9972.

6. Thiel, W. MNDO97, Version 5.0; University of Zurich: 1998.

7. José, M. S.; Emilio, A.; Julian, D. G.; Alberto, G.; Javier, J.; Pablo, O.; Daniel, S.-
P., The SIESTA method for ab initio order- N materials simulation. J. Phys.: Condens.
Matter 2002, 14 (11), 2745.

8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji,
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.;
Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.
C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;
Fox, D. J., Gaussian 09, Revision A.1. Gaussian, Inc.: Wallingford CT, 2009.

9. Koster, A. M.; Geudtner, G.; Calaminici, P.; Casida, M. E.; Dominguez, V. D.;
Flores-Moreno, R.; Gamboa, G. U.; Goursot, A.; Heine, T.; Ipatov, A.; Janetzko, A.; del
Campo, J. M.; Reveles, J. U.; Vela, A.; Zuniga-Gutierrez, B.; Salahub, D. R., deMon2k.
Version 3 ed.; The deMon developers, Cinvestav: Mexico City, 2011.

10. Bertran, O.; Trickey, S. B.; Torras, J., Incorporation of deMon2k as a New
Parallel Quantum Mechanical Code for the PUPIL System. J. Comput. Chem. 2010, 31
(14), 2669-2676.

11. Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam,
H. J. J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A., NWChem: A
comprehensive and scalable open-source solution for large scale molecular simulations.
Comput. Phys. Commun. 2010, 181 (9), 1477-1489.

12. Warren, J. G.; Revilla-López, G.; Alemán, C.; Jiménez, A. I.; Cativiela, C.;
Torras, J., Conformational Preferences of Proline Analogues with a Fused Benzene Ring.
J. Phys. Chem. B 2010, 114 (36), 11761-11770.

13. Neese, F., The ORCA program system. WIREs Comput. Mol. Sc. 2012, 2 (1), 73-
78.

14. Stewart, J. J. P. MOPAC 2016, Stewart Computational Chemistry: Colorado
Springs, 2016.

15. Dewar, M. J. S.; Thiel, W., Ground states of molecules. 38. The MNDO method.
Approximations and parameters. J. Am. Chem. Soc. 1977, 99 (15), 4899-4907.

16. Plotnikov, N. V.; Warshel, A., Exploring, Refining, and Validating the
Paradynamics QM/MM Sampling. J. Phys. Chem. B 2012, 116 (34), 10342-10356.

17. Todorov, I. T.; Smith, W.; Trachenko, K.; Dove, M. T., DL_POLY_3: new
dimensions in molecular dynamics simulations via massive parallelism. J. Mater. Chem.
2006, 16 (20), 1911-1918.

18. Case, D. A.; Darden, T. A.; T.E. Cheatham, I.; Simmerling, C. L.; Wang, J.;
Duke, R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang, W.; Merz, K. M.; B.Wang;
Hayik, S.; Roitberg, A.; Seabra, G.; Kolossváry, I.; K.F.Wong; Paesani, F.; Vanicek, J.;
X.Wu; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.;
Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M. G.; Sagui, C.; Babin, V.; Kollman, P. A.
AMBER 10, University of California: San Francisco, 2008.

	1. INTRODUCTION
	2. INSTALLATION
	2.1 Prerequisites
	2.2 PUPIL Directory Structure
	2.3 Building the Platform-independent Components
	2.4 Building the Platform-dependent Components
	2.4.1 Building Loosely Coupled User Packages.
	2.4.2 Building Tightly Coupled User Packages
	2.4.2.1 Conditioning Source Code
	2.4.2.2 Linking User Package Objects with PUPIL Libraries

	2.5 Testing Your PUPIL Installation

	3. RUNNING SIMULATIONS
	3.1 Preparing Simulation Input Files
	3.2 The Run Shell Script
	3.3 The Template Shell for Parallel Execution
	3.4 Output Simulation Files
	3.4.1 Manager Output Files
	3.4.1.1 AppServer.log
	3.4.1.2 output.xml

	3.4.2 Worker Output Files

	4. GUI – Graphical User Interface
	4.1 Simulation
	4.1.1 New/Modify Simulation.
	4.1.2 Calculation Units specification.
	4.1.2.1 Force Generation (QM)
	4.1.2.2 Domain Identification
	4.1.2.2.1 Manual Region Specification.
	4.1.2.2.2 Saving/Loading Partitioning Rules
	4.1.2.2.3 Domain Identification through an External Program
	4.1.2.3 QM Applications Currently Implemented
	4.1.2.4 Molecular Dynamics (MD).
	4.1.2.5 MD Applications Currently Implemented
	4.1.2.6 Domain Identification (DI)

	4.1.3 KeyMM/KeyQM Mapping
	4.1.4 Show Simulation Tree

	4.2 Results
	4.2.1 QM Simulation Summary
	4.2.2 Extract xmol file

	5. XML SIMULATION FILE
	5.1 The SIMULATIONROOT Element
	5.1.1 The ATOMDICTIONARY Element
	5.1.2 The RESIDUEDICTIONARY Element
	5.1.3 The KEYMM Element

	5.2 The SIMULATION Element
	5.3 Example XML input file

	6. BIGLIOGRAPHY

