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I. Disclaimer 
PUPIL (Program for User Package Interface and Linking) is free software. You may 
redistribute it and/or modify it only under the terms of the GNU General Public License 
as published by the Free Software Foundation; either version 2 of the License, or (at your 
option) any later version. 

PUPIL is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY, including but not limited to any implied warranty of MERCHANTABILITY or 
FITNESS FOR A PARTICULAR PURPOSE or NON-INFRINGEMENT. See the GNU 
General Public License for more details. 

You should have received a copy of the GNU General Public License along with this 
software; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth 
Floor, Boston, MA 02110-1301, USA. 

Neither the names of the EEBE, Quantum Theory Project, the Universitat Politècnica 
de Catalunya, the University of Florida, the National Science Foundation, nor the names 
of any of the copyright holders of PUPIL may be used to endorse or promote any 
products derived from this Software without specific, prior, written permission from at 
least one of the three Original Design contributors listed below. 

II. Acknowledgments 
Versions 3.1 and 3.0 have received partial support from PRACE by awarding with access 
to resources Curie TN based in France at GENCI@CEA and MareNostrum based in 
Spain at BSC 

The 1.3 version and previous versions have received partial support from U.S. National 
Science Foundation ITR Grant DMR-0325553 is acknowledged with thanks. This 
material is based upon work also supported by the National Science Foundation under the 
following programs: Partnerships for Advanced Computational Infrastructure, Distributed 
Terascale Facility (DTF) and Terascale Extensions: Enhancements to the Extensible 
Terascale Facility. The authors also acknowledge the University of Florida High-
Performance Computing Center and Teragrid (Grants TG-MCA05S010 and TG-
CHE060072T) for providing computational resources and support. 

III. Trademarks 
“Gaussian 03” and “Gaussian 09” are registered trademarks of Gaussian, Inc. (340 
Quinnipiac St Bldg 40, Wallingford, CT 06492, USA). 

We have endeavored to be scrupulous regarding trademarks. If we have overlooked a 
trademark reference, we will be pleased to correct the oversight. Please contact one of the 
three “Original Design” contributors listed below. 
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IV. Contributions 
• Original Design: 

– Juan Torras Univ. Politècnica de Catalunya, Spain 
– Erik Deumens University of Florida, USA 
– Samuel B. Trickey University of Florida, USA 

• List of contributors (alphabetical order): 
– Bertran, Oscar Univ. Politècnica de Catalunya, Spain 
– Cao, Chao Zhejiang University, China 
– Cheng, Hai-Ping University of Florida, USA 
– Deumens, Erik University of Florida, USA 
– Fu, Zheng La Jolla Institute for Allergy and Immunology 
– He, Yao Yunnan University, China 
– Muralidharan, Krishna University of Arizona, USA  
– Roberts, Benjamin New Zealand eScience Infrastructure, New Zealand  
– Roitberg, Adrian University of Florida, USA 
– Seabra, Gustavo M. University of Florida, USA 
– Torras, Juan Univ. Politècnica de Catalunya, Spain 
– Trickey, Samuel B. University of Florida, USA 

V. Standard Citations 
Scientific papers and presentations incorporating results obtained using PUPIL must 
reference the code as follows: 

“PUPIL, Program for User Package Interfacing and Linking version 4.0, (2022) a 
software product of the Universitat Politècnia de Catalunya, J. Torras, E. Deumens, 
S.B.Trickey, H-P.Cheng, C.Cao, Y. He, K. Muralidharan, A. Roitberg, G. M. Seabra, 
B. P. Roberts, O. Bertran, and Z. Fu.”  

Users also are requested to cite at least one of the following four papers about PUPIL: 

[1] “Software integration in multi-scale simulations: the PUPIL system”, J. Torras, E. 
Deumens, and S. B. Trickey, J. Comput. Aided Mater. Des., 13, 201-212 (2006). 

[2] “PUPIL: A systematic approach to software integration in multi-scale simulations”, J. 
Torras, Y. He, C. Cao, K. Muralidharan, E. Deumens, H.-P. Cheng, and S. B. Trickey, 
Comput. Phys. Commun., 177, 265-279 (2007). 

[3] “A versatile Amber-Gaussian QM/MM interface through PUPIL”, J. Torras, G. M. 
Seabra, E. Deumens, S. B. Trickey, and A. E. Roitberg. J. Comput. Chem. 29, 1564-
1573 (2008). 

[4]  “PUPIL: A Software Integration System for Multi-Scale QM/MM-MD Simulations 
and Its Application to Biomolecular Systems”, J. Torras, B.P. Roberts, G.M. Seabra, 
S.B. Trickey, Adv. Protein Chem. Struct. Biol., 100, 1-31 (2015). 
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1. INTRODUCTION 
PUPIL (Program for User Package Interface and Linking), is a software 

environment – the program – that allows developers to link quickly and efficiently 
together multiple pieces of software in a fully automated multi-scale simulation. More 
specifically, it supports QM/MM MD simulations where the user might choose among 
any of the different MD engines and QM engines, which are connected to PUPIL as 
external programs through a tiny specific interface. One of the main advantages here is 
that the user can use most of the functionalities that may have those external programs 
interfaced without the necessity to be implemented again on independent interfaces. In 
fact, this simulation interface concentrates all the common code involved in the coupling 
terms of the QM/MM approach. 

PUPIL allows developers to accomplish an increasingly important task, namely, 
systematic, efficient linking of several independent pieces of software or “user packages” 
– that have been and are actively being developed by researchers. PUPIL is general and 
can be used to link user packages from any scientific or engineering domain. However, it 
was originally developed with multi-scale simulation in materials physics and chemistry 
in mind, and several of the interfaces included in this release show that heritage.1 

This manual explains how to download, build, and install PUPIL. It also explains how 
to set up and perform a calculation. In this Introduction, we give a brief overview of the 
PUPIL architecture so you can gain a basic understanding of how PUPIL works. 
However, to get a thorough understanding, you should read the publications listed in the 
Standard Citations section above.1-4 Also, please keep in mind the Standard Citations 
requirement listed in the preliminary material of this manual. 

The design philosophy of PUPIL is to provide an environment for the software 
developer of user packages to do simulations in which data and simulation control are 
transferred from one user package to another in a straightforward manner. A design 
requirement is to do this without creating a monolithic, single-threaded code. A further 
design requirement is that changes in any of the user packages needed to couple them to 
PUPIL should be small and systematic. To make such changes, one obviously must 
understand the user package.  However, a PUPIL design objective is to avoid the need to 
have a complete and exhaustive understanding such as usually is required when one 
wants to create a combined user package from multiple, independently developed user 
packages. 

PUPIL itself acts as a supervisor program, coordinating execution and 
communication between the user packages, each of which provides a calculation unit 
(CU). The supervisor is implemented as a distributed program with one manager and 
several workers, one worker for each CU (Figure 1.1).2 The manager and the workers 
communicate using the RMI (Remote Method Invocation) Java protocol. Workers 
communicate with tightly coupled user packages via subroutine calls, and with loosely 
coupled user packages through data files. The manager and the worker codes are written 
in Java. The Java code for each worker calls C code in the CU through the JNIa (Java 

                                                 
a  Oracle,  Java Native Interface 6.0 specification 
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Native Interface). The CUs, often written in Fortran or C, communicate with their 
workers via a PUPIL library, written in C. 

 
Throughout this manual, we observe a few naming and typographical conventions. 

Commands to be typed in at a prompt are given in monospace and follow a $ sign (which 
denotes the shell prompt). Directory and file names that are not given as part of a 
command are shown in italics. The terms “coordinates” and “system coordinates” mean 
coordinates of nuclei and/or residues. (Electronic coordinates are internal to quantum 
mechanical CUs.) 

 

PUPIL MANAGER 

CORBA 

MD-CU 
Worker 

DI-CU 
Worker 

MD 
Calculation 

 

Domain Id. 
Calculation 

 

PUPIL SUPERVISOR 

QM-CU 
Worker 

QM 
Calculation 

  
Figure 1.1. PUPIL Architecture. Coordination and management of 

external packages such as Molecular dynamics (MD), quantum 
mechanical (QM), and domain identification (Domain ID) in a unique 

  

 

    

RMI 
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2. INSTALLATION 
This chapter discusses in detail the steps needed to build and install PUPIL on your 
computer system. This information is most valuable to the system administrator. In 
addition, developers who want to interface their user packages with other user packages 
through PUPIL will find the information essential. Researchers who want to use PUPIL 
together with a set of already configured user packages do not have to read this chapter. 

2.1 Prerequisites 
To build and install PUPIL, the following software components must be installed on your 
computer system: 

• Java SDK 1.11 or posterior http://www.oracle.com/ 
technetwork/java/javase/overview/index.html 
Warning:The previous versions to the 4.0 of PUPIL 
only work with Java 1.8. 

• Apache Ant   http://ant.apache.org 
• GNU make (“gmake”) http://www.gnu.org/software/make 
• CMake 15.0 or posterior https://cmake.org 
The present release of PUPIL includes support for eight user packages. To use any 

one of them, you must have access to it or else obtain a licensed copy and install that 
package on your computer system. We strongly recommend testing each user package by 
itself before using it with PUPIL. 

• User Packages: 
– Amber v18, v22 http://www.ambermd.org/ 
– deMon2k v 6.1.1 http://www.demon-software.com/ 
– DL_POLY (classic)v1.10 https://gitlab.com/DL_POLY_Classic/dl_poly/-/tags 
– Gaussian 03 or 09 http://www.gaussian.com/ 
– MOPAC 2016 http://openmopac.net/ 
– NWChem7.0.2 https://github.com/nwchemgit/nwchem/releases 
– ORCA v 3.0.3,v4.0,v5.0.3 https://orcaforum.cec.mpg.de/ 
– SIESTA v4.0 or v4.1.5 https://gitlab.com/siesta-project/siesta/-/tags 

To view molecular and material structures in its graphical user interface, PUPIL uses 
the Jmol tool, which is included with PUPIL as a precompiled jar library. 

• Jmol: http://jmol.sourceforge.net 
To optimize the processors resources assigned to each QM calculation when is 

dealing with multiple active zones (several QM regions, maz-QM/MM MD approach), 
PUPIL uses the Opt4J library, which is included as a precompiled jar library. 

• Opt4J: https://sdarg.github.io/opt4j/ 
  

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://ant.apache.org/
http://www.gnu.org/software/make
https://cmake.org/
http://www.ambermd.org/
http://www.demon-software.com/
https://gitlab.com/DL_POLY_Classic/dl_poly/-/tags
http://www.gaussian.com/
http://openmopac.net/
https://github.com/nwchemgit/nwchem/releases
https://orcaforum.cec.mpg.de/
https://gitlab.com/siesta-project/siesta/-/tags
http://jmol.sourceforge.net/
https://sdarg.github.io/opt4j/
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2.2 PUPIL Directory Structure 
Download the latest release of PUPIL from http://pupil.sourceforge.net. Extract all files 
from the .tar file. In the resulting directory, you will find the following subdirectories: 

• doc/ PUPIL manual and JavaDoc of class diagram 
• scripts/ Directory containing the shell scripts needed to run PUPIL 
• src/ Source code 
• tests/ Directory containing tests of the PUPIL system and some binaries 
• jmol/ Directory containing the precompiled Jmol library 

Directory which contains the Jmol libray (*.jar) (Note: The users who 
wish to update Jmol version (14.32.63) supplied with PUPIL will need to 
copy Jmol.jar library from the Jmol source code and change its name to 
JmolBean.jar inside this directory.) 

You also will find the following files: 
• build.xml.head and build.xml.tail: Two files used, along with information 

garnered at configure time, to prepare build.xml, the build file (similar to a 
Makefile) required by Apache Ant 

• CMakeList.txt: CMake files that rules the compilation, build and installation. 
 

Inside the directories mentioned above, you will find the following files: 
• src/ directory: 

– pupil-interface/ 
Directory which contains the PUPIL machine-dependent code, including 
source code for the C interface (JNI), source code for various “stub” 
programs that are used primarily for testing and development, source code 
for PUPIL utility programs, and patches for CUs themselves. 

– PUPIL/  
Directory which contains the Java source code for the PUPIL manager and 
workers. 

• tests/ directory: 
– sio2/  

Simple tests using silicon dioxide; these test the MD programs stubMD 
and DL_POLY, and the QM programs stubQM, DeMon2k, Gaussian, 
MOPAC 2016, NWChem, ORCA, and Siesta. 

– ala-di/ 
Simple test of alanine dipeptide QM/MD in explicit water; this tests the 
MD programs Amber and DL_POLY, and the QM programs stubQM, 
DeMon2k, Gaussian 03, Gaussian, MOPAC 2016, NWChem, and ORCA. 

– ala3/ 
Simple link atom test for a system consisting of a simple peptide, ACE-
(ALA)3-NME, in explicit water. This test uses the MD programs Amber 

http://pupil.sourceforge.net/
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and DL_POLY and the QM programs stubQM, Gaussian 03, Gaussian, 
and NWChem. 

– ala3-forces/ 
As with ala3 (see above), this test uses the Amber MD program and the 
QM programs Gaussian 03 and later Gaussian versions. It is a much longer 
test that uses the Amber debugging routines to compare and contrast 
forces computed by analytical differentiation and those computed 
numerically. 

– h2o/ 
Simple tests using two single waters molecules as multiple active zones 
(two QM regions, one molecule per region) testing the maz-QM/MM MD 
approach. This test uses the MD programs Amber and DL_POLY, and the 
QM programs MOPAC 2016, NWChem, Gaussian and ORCA. 

– ubiquitin/ 
A test for the GUI. It contains a single *.xml input file (e.g., data.xml) 
which, when loaded into the GUI and written out again, should yield the 
same result (with exceptions for trivial re-ordering, e.g., of hash table 
entries). 

Many scripts, CMake files, etc., which run most tests based on the contents of the 
directories described above. Of particular importance are the files pupil-run-
test.sh, a piece of shell code that should be included in any new test script And 
install_test.sh which runs the installation test that is a pre-condition for 
running rest of tests.scripts/ directory: 

 (NOTE: The files in the scripts/ directory are copied into $PUPIL_PATH/bin 
at installation time) 

– pupil-clean.sh 
A shell script to remove output and temporary files from a PUPIL 
execution directory. Since PUPIL uses standard names for its output, in 
most cases this script should be usable as is. 

– pupil-gui   
A script to open the PUPIL GUI. 

– pupil-run.sh 
A template shell script to execute a PUPIL calculation. This shell script 
intends to be a general script to execute PUPIL and should not be modified 
by the user. 

– pupil_paraRun.sh  
A template shell script for use of an MPI-compatible (OpenMPI) QM 
program with PUPIL. 

– pupil_paraRun_demon2k.sh 
A modification of the template shell script pupil_paraRun.sh to be used 
specifically with the deMon2k package. 

– pupil-timings.sh 
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A script to extract timing information from a PUPIL run. 
– pcforcempi.sh 

Specific template to start the parallel pcforce program, external to PUPIL 
package, in a general OpenMPI environment (used only with the old 
version of NWChem 6.1.1 and deMon2k QM programs, see §4.1.2.3). 

Throughout this manual, we assume that the environment variable PUPIL_PATH 
contains the directory into which PUPIL’s binaries and libraries will be installed. This 
variable can be set in shells such as sh or bash by the following command, which can 
also be added to your .bashrc file: 

$ export PUPIL_PATH=/path/to/top/directory/pupil 

where /path/to/top/directory/pupil is replaced by the path to the directory in 
which PUPIL is installed (such as /usr/local/pupil-4.0 or /opt/pupil-4.0). 

2.3 Building the Platform-independent Components 
The graphical user interface (GUI) (see below) and PUPIL Supervisor are implemented 
in Java. Compilation is done using ant, which is called using cmake.  
1. Extract the PUPIL code from the archive. 

$ tar -xjvf pupil-4_0.tar.bz2 

2. Create a build directory and go into it. 
$ mkdir build 

$ cd build 

3. Build PUPIL: 
$ cmake ../pupil-4.0 -DCOMPILER=”GNU”  

-DCMAKE_INSTALL_PREFIX=../install 

4. The -DCMAKE_INSTALL_PREFIX option allows you to change the install location 
(default: /usr/local); The -DCOMPILER option makes possible to change between GNU 
and INTEL compilers. Build the PUPIL binaries and libraries: 
$ make 

5. Install the tests directory tree and run some preliminary tests (stubs and loosely 
coupled user packages): 
$ ctest -VV -R install 

This first test runs installation, so also it can be done with 
$ make install 

Then PUPIL’s independent tests should be run 
$ ctest -VV -R sio2-stubMD-stubQM 

For more details about testing go to the Test section in $2.5 

6. Install the PUPIL binaries and libraries: 
$ make install 
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Two Java jar files will be created and stored in the 
DCMAKE_INSTALL_PREFIX/lib directory: 

– PupilCore.jar  
This has the PUPIL supervisor code and the shared PUPIL worker codes 
to be used in any simulation. See Chapter 3 for execution details. 

– PupilGUI.jar  

The graphical user interface. See Chapter 4 for execution details. 

Three shared libraries also will be placed in the same directory: 
– libPUPIL.so  

Main Interface between User Packages and the Java PUPIL supervisor. 
– libPUPILTime.so  

Library with routines to compute timing. 
– libPUPILBlind.so  

Library with stub functions. If a particular User Package does not define 
certain functions (usually because it does not need them), the stub library 
will provide a dummy replacement, so that the linking step can complete 
successfully.  

 Note: When linking any program to PUPIL, libPUPILBlind.so always should be 
placed at the end of the link line. 

Four binaries also will be made. Three of them are stubs to test the functionality of 
the manager in the simulation, each corresponding to one of the three roles that any 
application can play in a multi-scale simulation. The fourth, pcforce (see §4.1.2.3), is a 
parallel MPI binary, needed with some QM user packages, that calculates a force 
correction to classical particles as a result of the QM region. All of them will be installed 
in the DCMAKE_INSTALL_PREFIX/bin directory. The four binaries are: 

• stubMD Simulates the calls to/from the PUPIL library by a 
Molecular Dynamics Calculation Unit for a few 
steps. 

• stubDI Simulates the calls to/from the PUPIL library by a 
Domain Identification Unit. 

• stubQM Simulates the calls to/from the PUPIL library by a 
Quantum Mechanics Calculation Unit. 

• pcforce A utility provided with the PUPIL source code (but 
external to PUPIL per se) to calculate the forces 
upon the embedding point charges due to the 
interaction with the electron density of the quantum 
zone. Only to be used in some of the old QM CU 
versions. 

A JavaDoc describing the PUPIL conceptual model (data structures and their 
relationships) also will be created in javadoc/index.html. 
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7. Add the PUPIL library path to the $LD_LIBRARY_PATH environment variable: 
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$PUPIL_PATH/lib 

Add the PUPIL bin and lib path to $PATH environment variables 
$ export PATH=$PATH:$PUPIL_PATH/bin:$PUPIL_PATH/lib 

Note: On some platforms it may be necessary to specify the Java libraries in the 
LD_LIBRARY_PATH as well, for example: 
$ export 
LD_LIBRARY_PATH=$JAVA_HOME:$JAVA_HOME/lib:$JAVA_HOME/lib/server:$LD_L
IBRARY_PATH 

where $JAVA_HOME is a variable with the full path to the Java installation (or 
equivalent). Check your Java installation for specific details. 

2.4 Building the Platform-dependent Components 
The procedure to build the platform-dependent PUPIL binaries and libraries is described 
in this section. The steps are listed in the order in which they should be executed. 

2.4.1 Building Loosely Coupled User Packages. 
Some QM User Packages run as independent executables called by the PUPIL system. 
These packages do not require any source-code modification or recompilation to work 
with PUPIL. This mode of CU operation is called Start-Stop (SS), because a new instance 
of the QM CU is executed at each force evaluation. Loosely coupled CUs should be 
compiled by themselves as usual, following their own instructions. Their locations can be 
made known to PUPIL by means of the, though a symbolic link in $PUPIL_PATH/bin. 
Currently, the User Packages that run in Start-Stop mode with PUPIL are: 

– deMon2k v4.3.8 or v6.1.1 
– Gaussian 03 or 09 and later 
– MOPAC 2016 
– NWChem 6.1.1,6.5, 6.6, or 7.0.2 
– ORCA 3.0.3 or 4.0.1.2 
– SIESTA v4.0 or v4.1.5 

Some User Packages require extra data files, such as basis set libraries. (An example 
is the pair of files AUXIS and BASIS used by deMon2k. To run preliminary tests of the 
deMon2k program, you should set the DEMON2K_AUXIS and DEMON2K_BASIS 
environment variables with the correct AUXIS and BASIS paths, respectively.) These 
files must be visible at the location specified for that User Package executable, on every 
computer where the package will be run by PUPIL. Also, ORCA_PATH environment 
variable has to be set with the correct ORCA binary path to run orca tests. These data 
files do not need to reside inside the $PUPIL_PATH tree. 

2.4.2 Building Tightly Coupled User Packages 
Tightly coupled User Packages require source-code modification and linking with the 
PUPIL libraries to be used with the PUPIL interface. Three steps are required to build 
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such tightly coupled User Packages: Conditioning the source code (see next Subsection), 
compiling PUPIL libraries, and finally, building the new tightly coupled User Package 
binaries linked to the new PUPIL libraries compiled in the preceding step. 

2.4.2.1 Conditioning Source Code 

The User Packages that have an interface to interact directly with the PUPIL system 
should be conditioned (i.e., modified) before their compilation. The exact conditioning 
process varies among User Packages. 

– DL_POLY and SIESTA 
Source code patches for these programs are distributed with PUPIL in a separate 
file (dlpoly_siesta_PUPILpatches-v4_0.tar.gz). The steps to patch the original 
source code are the following: 

1. Download source code for the User Package to build the new Calculation Unit 
(DL_POLY or SIESTA) to plug into PUPIL. This source code will be 
modified during the compilation  
       dl_poly classic v1.9 or v1.10 
       siesta-4.0  or siesta-4.1.5 

2. If not already downloaded, download the patch file from 
http://pupil.sourceforge.net.  

3. Decompress and extract the patch file:  
       tar –xvzf  dlpoly_siesta_PUPILpatches-v4_0.tar.gz  

4. Change to the extracted patch directory and edit the patching shells *.sh, as 
follows.   

Add the correct directory in the configuration section of the script. This 
directory corresponds to the place where the source code of the User Package 
to be patched with the PUPIL Interface is located. (See the README file.) 

5.  Select the patch to be used. This must be change in the `patching shells *.sh, 
changing the pathFile variable (to the path to de desired patch to be applied) 

6. Execute the patching shell from this directory. The patching shell must have 
execute permissions. 

The patches currently tested with PUPIL package correspond to DL_POLY 
classic v1.9 or v1.10 and SIESTA v4.0 or 4.1.5. Before applying the patch you 
must select the correct patch. The information about which patch corresponds to 
which version is inside the README file within the 
dlpoly_siesta_PUPILpatchesv4_0.tar.gz compress file. 

– Amber, versions 10,11,12,14,16, 21 and 22 
Up through Amber version 16, the source code already includes the modifications 
necessary to interface with the PUPIL library, so further conditioning is not 
necessary to support use with PUPIL. See §2.4.2.2 for instructions on compiling 
and linking the “sander” binary.  

Note: Currently, sander program is included in the AmberTools 22 package.  
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2.4.2.2 Linking User Package Objects with PUPIL Libraries 

All User Packages (CUs) tightly coupled with PUPIL must be linked with the PUPIL 
libraries previously compiled and the platform-dependent Java libraries (see §2.3). The 
environment variables LD_LIBRARY_PATH, PUPIL_PATH, and JAVA_HOME also 
must be set. 

– DL_POLY and SIESTA 
1. Change to the source code directory of the already patched packages. The 

patched source code contains a Makefile already prepared for a default 
machine but a sanity check is strongly recommended. Make sure you have the 
correct Makefile, and the PUPIL libraries have been added correctly (see §2.3 
points 6 and 7).  

2. Compile the binaries.  
For DL_POLY (DL_CLASSIC version 1.10), after you have applied the 
patch, as explained in section $2.4.2.1, you can choose between the types of 
compilation in the source directory (to see all option write “make” in the 
terminal and press the tab key from your keyboard).  
 $ make pupil-dlpoly 
Then move to the execute directory on the top directory. There you will have 
the dlpoly executable named as DLPOLY.X. Copy the path to the dlpoly 
executable and move to $PUPIL_PATH/bin 
    $ ln -s /path/to/executable/DLPOLY.X dlpoly 
 
For siesta (version 4.1.5), after you have applied the patch, as explained in 
section $2.4.2.1. Move to the Obj directory in the uncompress directory from 
siesta and execute. 
  $ sh ../Src/obj_setup.sh 
 
Copy one of the arch.make types (for more information look at the siesta 
manual), for example the gfortran.make. Then, you can compile. 
  $ make 
 

After that, make the symbolic link in the $PUPIL_PATH/bin directory 
    $ ln -s /path/to/Obj/siesta siesta 
 

– Amber, version 21 and 22 
Download the source code from the repository (http://ambermd.org) and 
uncompress the file. Then move to the build directory, allocated on the top 
directory of the uncompressed file, and run the executable (Must be installed 
Cmake for installing amber)   

$ ./run_cmake 

If the CMake build report looks OK you can run the next commands.  

http://ambermd.org/
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To see if amber compilation have find the pupil libraries (remember that you 
should add the $PUPIL_PATH/lib to the $PATH and $LD_LIBRARY_PATH 
environment variables) at the end of the CMake build you should see a section called 
3rd Party Libraries, and in the subsection “using installed” you should find a line 
listing pupil as a 3rd party library. If it doesn’t appear it means that the initial 
configuration by CMake has not worked.  

Then you can proceed with the compilation and installation of the binaries, 
libraries and other utilities. 
$ make install 
$source /path/to/top/dir/Ambertools22/AmberTools22/amber22/amber.sh 

This will create the sander.PUPIL executable located in the $AMBERHOME/bin 
directory.  

You will need now to tell PUPIL where to find this executable. PUPIL will look for a 
file called sander in the $PUPIL_PATH/bin directory. So, you can either copy the 
sander.PUPIL executable there with the new name:  

$ cp $AMBERHOME/bin/sander.PUPIL $PUPIL_PATH/bin/sander 

or create a symbolic link there: 
$ ln -s $AMBERHOME/bin/sander.PUPIL $PUPIL_PATH/bin/sander 

 

– Amber, version 14 and 16 
Before you continue, make sure you have applied all the bug fixes for Amber 
(available from http://ambermd.org/bugfixes), and that you can build and 
successfully test a fully functioning stand-alone (serial) version of Amber from 
the patched code. See the Amber manual for details. 

1. Change to the $AMBERHOME/AmberTools/src/sander/ directory: 
$ cd $AMBERHOME/AmberTools/src/sander 

2. Compile the updated sander code and link it with PUPIL libraries in order to 
incorporate the PUPIL interface, as follows:  
$ make $AMBERHOME/bin/sander.PUPIL 

 Alternatively you can compile all additional stand-alone programs (which 
 also includes sander.PUPIL) by executing the following command: 

 $ make all_serial_programs 

 

– Amber, versions 10, 11 and 12 
Similarly to Amber 16, you have to make sure that all the bug fixes for Amber has 
been applied, and a stand-alone (serial) version of Amber has been successfully 
compiled and tested. 

1. Change to the $AMBERHOME/src/sander/ directory: 
$ cd $AMBERHOME/src/sander 

http://ambermd.org/bugfixes
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2. Compile the updated sander code and link it with PUPIL libraries in order to 
incorporate the PUPIL interface, as follows:  
$ make sander.PUPIL 

 

2.5 Testing Your PUPIL Installation 
To test the compiled PUPIL libraries, CU binaries, and the Java supervisor, it can be use 
the Cmake tool Ctest, as it is explained further down. All tests are built during 
compilation, so after you compile you can check the proper functioning using Ctest or 
running in the $PUPIL_PATH/test directory the bash files of each test. If the second 
option is followed, is imperative to run the install_test.sh script before running any 
others. All the binaries, or symbolic links to them, must be present in the 
$PUPIL_PATH/bin directory following the naming convention used above. This 
Makefile is used for several tests, e.g. the SiO2 molecule, alanine dipeptide, and alanine 
tripeptide are run using all the possible combinations of the stub, MOPAC, SIESTA, g03, 
Gaussian, deMon2k, NWChem, and ORCA as QM Calculation Units and the stub, 
Amber, and DL POLY as the MD Calculation Units (Amber is not included on the testing 
with the SiO2 molecule). It is assumed that, mopac, dlpoly, siesta, g03, gaussian, 
demon2k (demon2k.MPI), nwchem (nwchem.MPI), orca, and all the stubs are stored in 
the $PUPIL_PATH/bin directory. Follow the next table to assign the correct name to each 
symbolic link. 

 

Software Name of symbolic link 
Gaussias 03 g03 

Gaussias 09 or later gaussian 

Nwchem (serial) nwchem 

Nwchem (parallel) nwchem.MPI 

Demon2k (serial) demon2k 

Demon2k (parallel) demon2k.MPI 

Orca orca 

Mopac mopac 

Amber sander 

Siesta siesta 

Dlpoly dlpoly 

Table 1. Name of symbolic links for each software to use that PUPIL will recognize. 

Note: All tests involving NWChem it is assumed that one of the newer version are used 
and stored in the $PUPIL_PATH/bin directory. 

1. In the PUPIL build directory, run the following command: 
 $ ctest -VV -R install 
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2.  Now you can run any test, to see the full list of text run. 
$ ctest –N 

Use regular expression option (“-R”) to select tests and verbose option (“-VV”) to see 
results of tests. Follow the instructions in the following table to select some usual options. 

 

Test group Command 
All test  ctest –VV 

Clean all directory test   ctest –VV –R clean 

Specific test ctest -VV sio2-dlpoly-nwchem 

All serial test ctest -VV -R A(?!. *MPI).* 

All parallel test ctest -VV -R .*\bMPI\b.*\b 

All test except the ala3-forces test ctest -VV -R A(?!. *forces).* 

All test of one software {example: dlpoly} ctest -VV -R dlpoly 

All test which matches QM and MM software 
[example: all amber g03][order should 
coincide with test name] 

ctest - V V  -R \bamber\b. *\bg03\b 

All test which matches QM and MM software 
and  no pcforce 

Ctest -VV -R A(?!. *forces).*\bamber\b. 
*\bg03\b 

Table 2. Usual options to run the PUPIL tests. 

All those commands run a number of tests. It skips combinations for which the 
calculation units cannot be found. For other combinations, it will perform a short PUPIL 
calculation and compare the result against a saved file, reporting a failure if the 
differences are not of an acceptable type. (Numerical differences with errors larger than 
5•10-4 % are reported as a failure) 

Note: Small numerical differences between the energy values in the 
AppServer.log file created during the simulation and those in the reference 
AppServer.log.save file can result in false reports of failures. Check the 
real differences on the output of the test to avoid confusion with false 
errors. 
Also, please notice that some differences were observed in the number of 
calls for forces calculations from the Amber program (PUPIL calls) 
depending on the Amber version. Of course, that gives a different number 
of simulation steps reported in the AppServer.log file between Amber 
versions v11 and v12. Results from v12 have an extra iteration at the last 
MD step which also can lead to artificial failure reports. 
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3. RUNNING SIMULATIONS 
The whole QM/MM-MD simulation process might be represented in four steps 

(Figure 3.1). First, the user builds a XML file using the PUPIL graphical interface with 
all the information required by the simulation and supported by the input files of the 
external calculation units to be used. Next, the queue system assigns the resources that 
will be needed (in case to be executed in a computer cluster). The third is the most 
complicated step and builds the core of the simulation. The main PUPIL server manages 
the simulation by starting the interfaces and its associated external software packages 
(calculation units). The communication between those units will be a mix between the 
RMI space and input and output data files. Finally, the user interface extracts the requisite 
information through the output XML simulation file, or may be using any other 
additional viewer or software to deal with the output files data.1  

3.1 Preparing Simulation Input Files 
The PUPIL system allows the user to link all the calculation units (CUs) easily, but it is 
the user’s responsibility to prepare all the input files for each CU so that each one will 
work correctly within the simulation. The PUPIL manager does not check the validity of 
the input files for the individual CUs. Please refer to the respective User Package manuals 
for instructions on input file preparation. 

The coordinates of the molecular system, cluster, or extended system, as well as the 
classical type of each atom, are specified in the input files for the Molecular Dynamics 
CU. Different potentials for the same element can be represented as different atom types. 
For example, in a simulation of silica with water we could have two kinds of classical 
Oxygen atom, Oxygen from silica and Oxygen from water. 

 

 
Figure 3.1 Steps and relationships between the different elements involved in a PUPIL simulation. 

Start-Stop approach, where the MD package is the only one tightly coupled with the PUPIL framework. 

RMI 
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The input file for the QM CU supplies the general quantum variables except for the 
system coordinates. The quantum types of the particles also are obtained from this input 
file. The PUPIL system parses this file to record the different quantum particles that the 
user has defined in the multi-scale simulation. Following the same example of silica and 
water, we could assign different basis sets to the Oxygen atoms belonging to the silica 
and to those belonging to water. Beware: if an element of the periodic table occurs two or 
more times in ways that differ in any respect, then each different occurrence must have a 
unique atom name. For example, two Oxygen atoms with different basis sets must be 
named differently. 

With the two kinds of particles, classical and quantum, recorded, PUPIL creates a 
default mapping between them, indexed by the atomic number. The default mapping can 
be modified using the PUPIL GUI (see §4.1.3).  

  

3.2 The Run Shell Script 
The pupil-run.sh script included in this package is made to build the simulation 
environment by starting the PUPIL supervisor, and all required CUs which are specified 
in the input XML file used by PUPIL to run the simulation (e.g., file.xml). Construction 
of this file is discussed in Section 4 and its structure is discussed in Section 5.  Unlike in 
previous versions of PUPIL, this XML file may have any name.  The PUPIL run script 
can be used with the following syntax: 

$ pupil-run.sh   file.xml  >&2 

 

The previous command can be used interactively o through a queue manager. On the 
latter case, the pupil-run.sh script execution command may be incorporated into any 
container script that should be used according to the cluster queue system. Thus, a very 
simple example using PBS (Portable Batch System) directives to submit the job using a 
PBS queue manager, it would be: 

 
#!/bin/sh 

#PBS -N test 

#PBS -o test.log  

#PBS -e test.err  

#PBS -m abe 

#PBS -q  your_queue_name 

#PBS -l nodes=1:ppn=8 

 

DIR=/directory/path/where/your/files/are/stored 

 

cd ${TMPDIR} 
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# Initial files copy 

cp ${DIR}/data.xml        . 

cp ${DIR}/pupil-run.sh    . 

 

# recovering resources names to be used 

N=`wc -l $PBS_NODEFILE | awk '{print $1}'` 

echo Nr nodes $N 

cp $PBS_NODEFILE resources.txt 

 

#executing Pupil script 

time pupil-run.sh data.xml > run.log  

 

#recovering files 

tar cvzf run.tar.gz  . 

cp run.tar.gz ${DIR} 

 

Note: PUPIL manager will recognize the assigned resources from the queue manager in 
a file named resources.txt. 
 

3.3 The Template Shell for Parallel Execution 
Prior to starting any parallel worker (QM or MD), the parallel environment must be 
initiated in accordance with local hardware and software cluster characteristics and 
policies.  A startup shell script is generated from the PUPIL core following a user-
provided shell script template which incorporates those local cluster characteristics and 
policies. An example would be the MPI environment commands to get the worker 
running in the local hardware environment and the execution syntax for the 
corresponding CU. 

The PUPIL Manager creates a startup shell script to initialize the parallel code based on a 
template shell given and/or modified by the user (pupil_paraRun.sh). The way to 
accommodate the given template shell for parallel execution is via environment variables 
which values are provided from the PUPIL Manager; it knows the correct values for 
them. The user should place these environment variables properly inside the template in 
order to get a startup parallel shell script that is correct for the user's computing 
environment.  Currently supported environment variables for the parallel shell build are 
the following: 

 

PUPIL_WORKPATH Directory where the parallel CU will be executed by 
default. 
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PUPIL_RESOURCES List of resources (processors or nodes) to be used in 
the upcoming  parallel CU execution 

PUPIL_EXE Line command to start the parallel program. 
Includes all the PUPIL additions to initiate the CU 
and JVM.   

PUPIL_FILE_IN Input file for the parallel CU execution. 
PUPIL_FILE_OUT Output file from the parallel CU. 
PUPIL_FILE_ERR File where all the error messages from the parallel 

CU are to be stored. 

 

Moreover, three template shells for parallel execution are provided in the directory 
$PUPIL_PATH/scripts. 

- pupil_paraRun.sh 
General template that starts a general OpenMPI environment to run a general 
PUPIL Worker properly (used with the NWChem CU). 

- pupil_paraRun_mpich2.sh 
General template that starts MPICH2 environment to run a general PUPIL -
Worker. 

- pupil_paraRun_demon2k.sh 
Specific template to start the parallel deMon2k CU execution in a general 
OpenMPI environment. 
- pcforcempi.sh 
Specific template to start the parallel pcforce program in a general OpenMPI 
environment (see §4.1.2.3). 

- pcforcempi_mpich2.sh 
Similar to the previous one but starting the parallel pcforce program in a MPICH2 
environment. 

 

The user must NOT change the value of the general environment PUPIL variables for the 
template, since doing so would result in erroneous behavior of the simulation package 

3.4 Output Simulation Files 

3.4.1 Manager Output Files 
There are two types of files that consolidate all the outputs from PUPIL simulations, 
AppServer.log and the output files from distributed CUs. 
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3.4.1.1 AppServer.log 

This file is written by the PUPIL Manager. All the CUs exchange information and events 
with the Manager, which is in charge of writing them in this log file. There are four 
different levels of output detail: 

 -1 Only errors are printed. 

 0 Normal comments and errors are printed (default level). 

 5 Debugging information, except for system coordinates, is printed. 

10 All coordinates and debugging information are printed. 

Every entry in the log file has the origin of the message enclosed in brackets, [ ], at 
the beginning of the line. The most common sources of comment entries are the 
following: 

– CoordinatesServer 
This is the general MD worker, which receives the classical system coordinates 
and generates the QM system coordinates. 

– CoordIntfc 
This Java class implements the RMI server for the CoordinatesServer. Usually, 
CoordIntfc receives the quantum forces from the general QM worker and the 
quantum zone from the General DI worker. 

– ForcesServer  
This is the general CycleQM worker.  It receives the quantum forces from the 
quantum packages through the PUPIL library and sends those forces to 
CoordIntfc. 

– ForcesIntfc 
This Java class implements the RMI server for ForcesServer. It receives the 
quantum system coordinates and puts them into the cycleQM package through the 
PUPIL library. 

– DomainsServer 
This is the general DI worker. It receives the atom numbers that belong to the 
quantum zone from the DI packages through the PUPIL library and sends that 
information to CoordIntfc 

– DomainsIntfc 
This Java class implements the RMI server for DomainsIntfc. It receives the 
classical particle coordinates, atom types, and other variables to pass through the 
PUPIL library to the program that will determine the quantum domain. 

– PUPIL.Domain 
These are specialized Java classes from the System Domain, which are 
responsible for any specific CU behavior, such as SiestaQMJob, etc.1-2  
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3.4.1.2 output.xml 

This file has a structure similar to that of the simulation XML input file (*.xml, see 
Chapter 5) but with all the intermediate results obtained in the simulation. The user 
decides how many steps will be taken before writing a new record to output.xml. This 
output file is useful for following the multi-scale simulation. However, the output can 
become quite large when the physical system has a large number of particles. If the 
number of particles is very large, writing this file may exceed available memory, causing 
PUPIL to crash. The memory resources are monitored in the AppServer.log file. To avoid 
crashing PUPIL when the physical system has a very large number of particles, the user 
may have to consult whatever intermediate files the CU may provide to analyze the 
simulation results instead of adding new intermediate steps to be stored in the output.xml 
file (see §4.1.2.4). 

3.4.2 Worker Output Files 
The standard output and standard error channels for all general workers are redirected to 
files (one standard output file and one standard error file for each worker). All the normal 
output from the workers is contained within these files. Errors that occurred in any 
worker can be monitored in these files as well as in the general log file. The debug 
messages from the worker–PUPIL interfaces and the PUPIL C libraries also may be 
found in these files. 
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4. GUI – Graphical User Interface 
PUPIL’s graphical user interface (Figure 4.1) helps the user to build the input file with a 
XML format (e.g., data.xml) for a multi-scale simulation. This chapter explains the GUI 
options. 

The GUI is started using the following command: 
$ pupil-gui 

  

4.1 Simulation 
The simulation input consists of a brief description of the whole simulation task and the 
information necessary to run each Calculation Unit. All this information will be stored in 
memory in the same way as in the XML input file (e.g., data.xml) created to run the 
simulation (see Chapter 5). 

4.1.1 New/Modify Simulation. 
In the first step, a new simulation must be created via the Simulation → 
New Simulation Input menu option (Figure 4.2). The following fields must be completed: 
 

– Simulation Name 
A user-defined name for this simulation.Base Directory 

This is the path of the working directory in the file system where PUPIL will 
create the output and temporary files. A period (decimal point or full stop, “.”) 

 
Figure 4.1. PUPIL GUI screen shot which shows the state immediately after loading the QM Calculation 
Unit files. In this example, Gaussian is being used as the QM CU. 
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may be used to indicate the directory in which the initial shell script (pupil-run.sh) 
is executed. 

– Log Level 
Shows the level of printing from the PUPIL system during the simulation. Three 
possibilities are accessible from the GUI: 
– Without log printing:  Only errors will be printed. 
– Normal log printing:  Basic output will be printed, allowing the user to 

follow the simulation’s progress. 
– Debug log printing: Detailed information about the data (except for 

particle coordinates) from each worker will be 
printed at each simulation step. 

Though not accessible from the GUI, there is a fourth, extremely verbose log level which 
prints the coordinates of each atom at every step. This level may be accessed by giving 
the optPrint element in the input XML file (*.xml; see Chapter 5 for a brief description of 
this file) a value of 10. 

– Max. number of Java Threads 
For shared-memory (SMP) 
machines, this input allows one 
to specify the number of threads 
to be created by the Java code, 
and with which the PUPIL 
Manager will work in parallel. 

Some bottleneck points from 
PUPIL Core have been 
parallelized in the current 
version, mainly the QM Domain generation using neighborhood rules and the 
long-range electrostatics calculation using Ewald Summations. Extension of their 
use to the rest of PUPIL core is under consideration for a future releases.  

– Java Memory 
Each PUPIL worker creates a Java Virtual Machine (JVM), which is started with 
an initial amount of memory (heap). The Java heap is where the objects of a Java 
program live. It is a repository for current active java objects, dead objects, and 
free memory. When any of those objects no longer can be reached from any 
pointer in the running program, it is considered “garbage” and ready to be 
cleaned. Sometimes, depending on system size, that memory could be insufficient 
and more memory should be set. The JVM has three parameters to manage the 
memory assigned to each java program. 

- Initial memory 

This is the initial and minimum size of the heap (MB). Some JVM developers 
recommend that this value be set to the same size as the maximum heap size. 

- Maximum memory 

 
Figure 4.2. New simulation dialogue box 
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The default maximum heap size is a dynamic value determined by the amount 
of free physical memory in the computer system. A good practice in order to 
avoid paging is to limit the maximum heap size. This value will depend on the 
size of the system under simulation and the available computer resources. 
Usually the value should be less than 75% of physical memory in the 
computer system. 

- Stack size 

Each thread in the JVM gets a stack. The number of possible threads is limited 
by the stack size. If the stack size is too big you will run out of memory as 
each thread is allocated more memory than it needs. However, for simulating 
big systems the stack size should be increased in order to avoid memory 
problems. PUPIL by default requests 16 MB of stack space, which should be 
ample for most situations. 

 

4.1.2 Calculation Units specification. 
The main GUI panel (Figure 4.1) is divided in two sections. On the left is a list of the 
CUs that are supported by the PUPIL system.  

Note: CUs for which support is under development may show in the panel but not 
be fully supported. Also, CUs will be listed even if not installed at your site.  

On the right is the main window for the Jmol application (http://jmol.sourceforge.net) 
that helps visualize the classical and quantum system read by PUPIL from the input files 
discussed in §3.1. JMol has been embedded into the PUPIL GUI. 

The CU panel is divided into three sections, one for each role that a CU can play in 
the PUPIL multi-scale simulation. 

You must specify one Molecular Dynamics (MD), one Force Generation (QM), and 
one Domain Identification method for the simulation. All CUs involving MD and QM 
methods have a common set of parameters to be assigned when selected: 

– Executable 
The user specifies the path and name of the binary that will be associated with the 
CU. PUPIL will make a copy of the binary within the working directory for the 
simulation; this copy will be executed during the simulation. 

– Run application in parallel using MPI 
This option controls whether this particular calculation unit is to be run in parallel 
using MPI. It should not be used for CUs that rely on shared-memory (SMP) 
processing, e.g., usual execution of Gaussian program. 

– Number of MPI tasks to run 
This option is available only if a parallel run using MPI has been requested (see 
above). It specifies the number of MPI processors associated with the CU. If “Run 
application in parallel using MPI” is enabled, this value should be an integer 
greater than 1. A shell script template, pupil_paraRun.sh (from the PUPIL 

http://jmol.sourceforge.net/
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software), is used to build a proper script to start the QM MPI calculation. The 
template is found in the $PUPIL_PATH/scripts/ directory. At each execution, 
PUPIL enters appropriate values for all the internal environment variables 
contained in the template. Prior to this, however, the user must: 

1. Edit the template (pupil_paraRun.sh) to match the MPI package installed on 
the target system, and  

2. Copy the result into the simulation directory where the PUPIL starting run 
shell script (pupil-run.sh) has been placed.  

4.1.2.1 Force Generation (QM) 

To obtain the quantum forces (Figure 4.3), some common parameters must be specified 
for each CU involved in the simulation. This section is devoted to those parameters that 
are general for any QM CU only. Later, the specific parameters for each specific CU are 
given; see §4.1.2.3. 

– Save output and error files at this interval (steps) 
This option instructs PUPIL to 
save the information written by the 
QM CU to standard output and 
standard error every so many steps. 
If this option is left unchecked, the 
QM CU output will be overwritten 
at the start of each new QM force 
evaluation.  

– Use Periodic Boundaries 
This option is needed only if the 
classical system has 3D periodicity 
in a parallelepiped or cubic MD 
cell. Only orthogonal unit cell 
vectors are allowed so far (no 
hexagonal unit cells). If this option 
is selected, PUPIL will translate 
the atomic coordinates using the periodicity of the system, such that the quantum 
zone ends up at the center of the unit cell for the QM calculation. 

– Use cyclic QM (through RMI)  
Warning! This option applies only to tightly coupled QM packages. If this option 
is checked and the binary does not have the corresponding cycleQM behavior 
compiled with a proper PUPIL interface, the simulation will fail in a deadlock. 
This option tells the PUPIL Manager that the current CU will have the CycleQM 
behavior.1-2 The binary will be put into execution once, and then used repeatedly.  
It will be restarted only when the quantum zone changes. 

 
Figure 4.3. Gaussian QM specification 
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– Chain Rule for pairs of link atoms 
If this option is checked and the simulation has link atoms in the embedding zone 
(see Embedding Rules, below), the Chain Rule will be applied to every pair of 
link atoms to distribute the force over the link associated with them.  

– Apply a post-QM Coulomb force correction to MM atoms 
Most QM user packages do not compute the force exerted by the QM region on 
the surrounding classical atoms (which typically are represented to the QM 
program as fixed point charges). If this option is checked and the simulation has 
point charges in the embedding zone (see Embedding Rules), two different ways 
to obtain those forces will be used, depending upon which CU is used to perform 
the simulation. The Gaussian CU, NWChem, and deMon2k obtain those forces 
through the field at each point charge, whereas older versions of deMon2K (e.g. 
v2.4.2) and NWChem (e.g. v6.1.1) obtain them through a simple integration 
between the point charges and the electronic density calculated over the system 
volume.3 This approximation attempts to calculate and correct this force 
component, modifying the forces on the classical atoms associated with the point 
charges. 

When this option is checked the PUPIL Manager will use the whole classical box 
to build the embedding zone to calculate electrostatic interactions in the real 
space, but long-range electrostatics will not be calculated. This is to be compatible 
with previous versions of PUPIL. However, the user might add long-range 
electrostatics interactions at the simulation by means of the following check 
boxes: 

  - Apply PBC corrections between QM-QM atoms 
 Interactions among QM atoms and all their virtual images will be 
considered using the Ewald Summations approach.  

  - Apply PBC corrections between QM-MM atoms 
 Interactions between quantum particles and virtual images of point charges
 will be considered using the Ewald Summations approach. 

  - Cutoff radius (direct) 
This is the radius' cutoff to select environment point charges around the 
quantum region in the Ewald Summations approach (direct space). This 
value has to coincide with the neighboring distance to select point charges 
in the embedding rules (see section §4.1.2.2.1). Since minimum image 
convention is used, the user defined cutoff is limited to a maximum value 
of the half the smallest box edge length. The default value will consider 
the whole classical box in order to keep compatibility with previous 
versions of PUPIL. 

  - K max vector (reciprocal) 
 This is the reciprocal-space cutoff value in the Ewald Summations 
approach. It is an integer defining the summation range over all integer 
 translations of the reciprocal lattice. 
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– Total charge of embedding region 
Introduction of a link atom in the quantum zone can cause a charge neutrality 

violation. To correct this, PUPIL will adjust the total charge of the embedding 
region to the current value introduced by the user. This charge should be used to 
impose charge neutrality to the whole system (qembed + qqm = 0). 

 

Note: the charge introduced in this box is the net charge of the embedding 
(classical) region only. 
 

4.1.2.2 Domain Identification 

This module is used to control QM/MM partitioning, where the inner QM region and the 
external MM (classical) region are set. Currently, two kinds of Domain Identification are 
allowed: Manual Region Specification and Domain Identification through an External 
Program. The former is required to specify manually the QM region, the link-pairs 
connecting the quantum and classical regions, and the embedding particles used as point 
charges. 

When no embedding rules are specified and no external DI program is running, the 
entire classical system will be considered as a single quantum zone and will be mapped 
following the default mapping rules between the classical and quantum kinds of atoms 
(see §4.1.3), based on atomic numbers. 

 

4.1.2.2.1 Manual Region Specification. 

This dialogue box (Figure 4.4) provides the user with the option to assign, by means 
of a specific set of rules, a fixed quantum zone and its embedding. The dialogue box 
allows the user to distinguish among three Regions (or Zones), namely the QUANTUM, 
CLASSICAL, and STATIC-CHARGE regions. Each particle must be assigned to one of 
these three regions. Also, five different check-boxes allow the user to define all 
atom/residues belonging to any of the three regions: 

- Specification of the QM Region: Use this box to assign specific atoms or 
residues directly to the QM region. 

- Specification of the MM Region: Use this box to assign specific atoms or 
residues directly to the MM (classical) or static charge regions. 

 - Specification of the Fixed Link Pairs: Use this box for direct assignment of link-
pairs atoms that connect quantum and classical regions. The link-pairs defined at 
this point will be kept fixed during all the simulation. 

- Specification of Distance-Based Link Pairs: Use this box to define link-pairs 
based on distances between quantum and classical atoms.  This assignment will be 
re-evaluated at each simulation step. 



PUPIL User Manual 

31 

- Specification of Distance-Based Residues: Use this box to assign residues 
outside the QM region to the MM or static charge region using criteria of distance 
from any particle in the QM region. 

 

The PUPIL GUI dialogue allows the user to apply four kinds of basic rules to atoms 
and/or residues: 

– Direct atom/residue type assignment 
This rule is used to define a relationship between a classical particle (identified by 
its atom number) and the particle associated with it in the quantum calculation 
(i.e., a point charge or a full QM atom), on a particle-by-particle basis. The user 
must specify here all particles that will not be accounted for correctly by any of 
the more general rules. This definition may assign the atom as a quantum atom or 
as a member of the first embedding layer, referred to as CLASSICAL on the 
dialogue boxes, or the second embedding layer, referred to as STATIC-CHARGE 
(but no farther). Also, the particle must be given a quantum-atom type or specified 
as a point charge. 

Residues with both quantum and classical parts cannot be fully assigned to either 
the QM zone (“QUANTUM”) or either of the two classical zones 
(“CLASSICAL”, “STATIC-CHARGE”) defined below. As a result, all atoms in 
these residues, except the classical counterparts of possible link atoms, must be 
specified individually here, and assigned to the corresponding point charge or QM 
atom. 

When the MD CU has an option to describe sets of atoms, (e.g., “molecules” in 
DL_POLY or “residues” in AMBER), PUPIL groups those sets as residues. A 
direct relationship is established by default between any classical residue (defined 
by its residue number) and its associated quantum particles. The default mapping 
may be overridden by the user to provide rules for mapping between the classical 
atom types belonging to a specific residue and the corresponding quantum atom 
types (see §4.1.3). 

 Atom/residue selection. In all cases the user can choose between selecting 
 a set of atoms (residues) by mean of a range specification, or the user can 
 choose a single atom (residue) to be assigned at any of the QM/MM 
 partitioning region. The range syntax has to be specified with an 
 “hyphen” between the minimum and the maximum of involved atom 
 numbers (residue numbers). 

In the Ubiquitin example shown (Figure 4.4), all particles selected by 
either atom range and/or residue range, have a default QM type or MM 
type. Only in the case of a single-atom assignment is it mandatory to 
specify the corresponding mapping type (QM or MM type).    
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– Fixed Link Pairs. 
This rule allows specification of fixed link-pairs to the quantum zone during the 
whole simulation. Link pairs are necessary when covalent bonding is defined 
between atoms of different regions. The user must identify the atom in the 
quantum region (QM-host) and its counterpart in the classical region (MM-host). 
The link-atom is the atom with which to replace the MM-host in the quantum 
calculation in order to saturate dangling bonds. Also, the user must assign a new 
bond distance and new QM type for the defined link atom. 

For example, the quantum zone depicted in Figure 4.1 (right hand side), 
representing the quantum region of the Ubiquitin simulation, shows two closing 
residues. Each of those residues is connected to two other residues in the protein, 
with the cycle of the P19 residue being cut. Thus, there are six link atoms in total. 
The screenshot in Figure 4.4 shows the assignment of those six link atoms. Since 
the residues connected to the quantum zone are neither completely quantum nor 
completely classical, all remaining atoms of those residues must be specified in 
the upper left-hand area of the dialogue box (Specification of QM Region). This 
distinguishes them from the remaining classical atoms, which will be assigned 
later in the right-hand area of the dialogue box (Specification of MM Region). All 
atoms belonging to this residue that are not assigned yet will be mapped as static 
point charges in the embedding region of the QM/MM partition. 

 

– Distance-Based Link Pairs. 
This rule has a different philosophy from that of the fixed link-pair assignment 
rule. The distance-based rule will assign all particles as link-atoms that have a 
specific type (MM type) and are located inside a user-defined shell 
(“neighborhood”) around the nearest, already-assigned QM zone. Thus, all the 

 
Figure 4.4. The dialogue box for specifying the embedding rules and assigning atoms to classical or 
quantum zones. 
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classical particles that 

(i) have a specific atom type defined in the “MM atom type” column, and 

(ii) are separated from any particle belonging to the quantum region by a 
distance within the limits defined by the “rMin” and “rMax” column, 

will be assigned as link-atoms together with their closest QM-host, and will 
substitute the MM-host in the quantum calculation with the new “Link QM type” 
defined on the fourth column. Also, the user must assign a new bond distance 
between the defined link-pair. 

 
– Neighboring residue type assignment. 

This is a more general rule to map classical particles belonging to a specific 
residue to quantum particles based on the distance between the residue center of 
mass and the nearest, already-assigned quantum particle. This field can be used to 
assign any particles that have not yet been defined in the previous boxes. The 
assignment is done by residue type and distance.  Thus, any particle that: 

(i) belongs to one of the residue types listed in the “MM residue type”, and 
(ii) falls within the distance range defined by “rMin” and “rMax”, and 
(iii) has not been defined in any of the previous rules, 

is assigned to the embedding zone designated in the “zone” column. 

 

4.1.2.2.2 Saving/Loading Partitioning Rules 

This capability allows the user to save partitioning rules to an external file in order to 
create, transfer, and edit them easily between different simulations. 

 
- Loading rules set. 

 To load a set of rules into the Partitioning Rules Editor dialogue box, just 
open the file by clicking the “Load” button and look for a txt file format 
containing the new set of rules. When the new set of embedding rules is 
loaded, the existing rules in the Partitioning Rules Editor dialogue box are 
flushed and replaced by the new set. The changes will become permanent after 
accepting the dialogue box button.   

 
- Saving rules set. 

 To save the rules in the current Partitioning Rules Editor dialogue box, 
click the “Save” button and a new txt file will be stored with the name and in 
the location that the user chooses. 
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- Editing an external file of partitioning rules. 

The partitioning rules file has a txt format, and can be created and edited 
outside the PUPIL GUI. The file structure is made by grouping partitioning 
rules in the three allowed zones for PUPIL simulations: quantum particles 
(QPR), classical particles (CPR), and static charge particles (SCR). The blocks 
of rules are defined by the directive #block … #endblock: 

 #block “Name_of_partition” 

 #endblock 
Allowed partition names: QPR, CPR, and SCR. 
It is mandatory that any partition rules file must include definitions of all 

three partition rule blocks, independent of whether any block is empty or not. 

There are four types of partitioning rules that can be defined inside the 
above-cited blocks of rules. 

 

• Set Rules (SETR) 
  

This rule allows specification of a set of UNITs (ATOM or RESIDUE) 
belonging to one of the partition zones: quantum, classical, and static charges 

Syntax: 

 SETR {ATOM | RESIDUE} ini_unit_number[- end_unit_number] 

  

 The ATOM or RESIDUE units from ini_unit_number through the 
end_unit_number (the latter being optional) will be assigned to the specific 
block partition in which this rule is defined. The new type of particle will be 
assigned by default. So, on the QPR block only QM_types are considered, 
whereas on the CPR and SCR blocks, only MM_types (as point charges) are 
considered.  

Examples: 

 SETR ATOM 300-302 

 SETR RESIDUE 57  

 

Syntax: 

 SETR  ATOM  unit_number  {QM_type | MM_type} 
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 A specific ATOM unit is allowed to be assigned as a given QM_type 
(quantum zone only) or MM_type (as a new static charge on the embedding 
zone). 

Examples: 

 #block QPR 

  SETR  ATOM  902  C 

 #endblock 

 

 #block CPR 

  SETR ATOM 310 P19.HB2 

  SETR ATOM 885 L56.N 

 #endblock 

 

where C references a quantum type of particle already defined in the input 
file of the quantum mechanics program and both P19.HB2 and L56.N are 
classical particles (residue.atom_name) defined from the input file of the 
molecular dynamics program. 

 

• Fixed Link Pair Rules (FLPR) 
 
This rule allows specification of a link pair that connects the quantum and 

classical zones and is fixed during the whole simulation. This is the most 
common link-pair definition used in QM/MM simulations. 

This rule is only allowed to be defined in the classical particles block 
(CPR). 

Syntax: 

 FLPR QMHost unit_number MMHost unit_number QMLinkType 
QM_type  new_distance 

 

The QMHost ATOM unit and its corresponding MMHost ATOM unit, 
through which the classical and quantum zone respectively are to be 
connected, are defined. The new particle type in the quantum calculation of 
MMHost is specified as QM_type.  It will be placed at the new_distance from 
QMHost along the bond direction between QMHost and MMHost.   

Examples: 

 FLPR  QMHost  316  MMHost  318  QMLinkType  H  1.0 
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 FLPR  QMHost  300  MMHost  289  QMLinkType  H  1.0 

 

where a new link-pair is made by  atom 316 in the quantum zone and atom 
318 in the classical zone. The latter will be substituted by a Hydrogen atom 
placed 1.0 Angstrom from the QMHost along the bond that crosses  quantum 
and classical zone. Similarly, the second example defines another pair-link, 
this one involving atom 300 and 289, which reside in the quantum and 
classical zone, respectively. 

 

• Neighboring Rules (NBHR) 
 
This rule allows specifying a set of UNITs (ATOM or RESIDUE) 

belonging to any of the CPR and SCR blocks which is distance-based to any 
of the currently defined quantum particles. 

 

Syntax: 

 NBHR  RESIDUE  MM_type  min_distance  max_distance   
All classical RESIDUE units on the system which are holding a MM_type, 

and are located between min_distance and max_distance to any of the already 
defined quantum particle, will be taken as a part of the CPR and SCR block. 
All residue atoms defined by this rule will be mapped by default to its 
MM_type as a point charge.  

 

Example: 

 NBHR RESIDUE ALA 0.0 200.0 

 

where all ALA residues on the system that are placed up to 200.0 Angstrom 
from any quantum particle will be mapped to its default of static charge 
particles, following the already-defined default KeyMM/KeyQM mapping 
table (see section §4.3.1).   

 

• Neighboring Link Pair Rules (NLPR) 
 
This rule allows specification of a distance-based link pair which it 

connects the quantum and classical zones.  It is recalculated at each simulation 
step. 
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Syntax: 

 NLPR  ATOM  MMHostType  MM_type  min_distance  max_distance  
QMLinkType  QM_type  new_distance 

 

All classical atoms in the system which have an MM_type and are located 
between min_distance and max_distance to any of the already-defined 
quantum particles, will be taken as MMHost on a new pair-link. A new set of 
pair-links will be created at each simulation step between those quantum and 
classical atoms that follow this rule, with the MMHost particle substituted by 
the newly defined QM_type, and placed at the new_distance along the bond  
between QMHost and MMHost. 

 

Example: 

 NLPR ATOM  MMHostType  ALA.C  0.0  1.5  QMLinkType  H  1.0 

 

where all ALA.C atom types will be taken as MMHost in a new pair-link 
made of this atom and the one on the quantum zone that has a distance 
between 0.0 and 1.5 Angstrom. The new QMHost will be placed as a 
Hydrogen atom at 1.0 Angstrom upon the bond crossing between the quantum 
and classical zones. 

 

Next we show the rules defined from the Ubiquitin test as a general 
example of the Partitioning Rules File: 

 

#block QPR 

   SETR ATOM 300-302  

   SETR ATOM 312-317  

   SETR ATOM 902-903 

   SETR ATOM 915-916  

   SETR RESIDUE 57  

#endblock QPR 

 

#block CPR 

   FLPR QMHost 316 MMHost 318 QMLinkType H 1.0 

   FLPR QMHost 300 MMHost 289 QMLinkType H 1.0 

   FLPR QMHost 302 MMHost 303 QMLinkType H 1.0 
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   FLPR QMHost 312 MMHost 309 QMLinkType H 1.0 

   FLPR QMHost 902 MMHost 887 QMLinkType H 1.0 

   FLPR QMHost 915 MMHost 917 QMLinkType H 1.0 

#endblock CPR 

 

#block SCR 

   SETR RESIDUE 1-56 

   SETR RESIDUE 58-76  

#endblock SCR 

 

4.1.2.2.3 Domain Identification through an External Program 

 This option allows specification of a quantum region by use of a program external 
to the PUPIL package as another CU which interacts with the simulation manager of 
PUPIL similarly to the externals MD and QM programs. This functionality is useful 
when specification of the quantum region by means of the usual manual region 
specification rules is too complicated. So, the external Domain Identifier should interact 
with the Simulation Manager by exchanging information as described in the 
bibliography.1 The necessary information to be supplied by external Domain Identifier to 
PUPIL interface is the following: 

- The total number of quantum particles 

- A list containing those atom numbers from the MM particles list that should be 
made quantum. 

- The number of different actives zones involved in the simulation 

- An ordered list with a specific register for each active zone (number of atoms, 
multiplicity, total charge, and the assigned number of resources (CPU’s) in a 
given quantum region). 

 

 Figure 4.5 shows the dialogue box where are set the simulation parameters using 
an external program that has the 
responsibility to identify the main 
quantum region. In order to facilitate 
further implementations, the stubDI 
application (compiled by default within 
the PUPIL package) implements a very 
simple external Domain Identifier as 
example, which also supports multiple 
QM regions for testing prototypes of 
maz-QM/MM MD approach5 (see h2o 
tests).   

 
Figure 4.5 The dialogue box for specifying the 

quantum region through an external program. 
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- Steps between Dom. Ident. calls. 
This option specify the interval of MD steps that the Pupil Manager should 
wait between two different calls to the external Domain Identifier in order to 
get an updated list of atoms belonging to the quantum region. 

- Number of QM regions (QMWorkers) 
Starting in version 3.1 of PUPIL, multiple quantum regions are allowed within 
a unique QM/MM-MD simulation, (multiple active zones QM/MM MD 
approach, maz-QM/MM MD).5 

In order to activate multiple active zones the user has to specify the number of 
different quantum regions involved in the current simulation (by default is 
deactivated by assigning a value of 1). Pupil Manager will set up one 
additional and independent QMWorker for each one of the quantum regions to 
be treated. 

- Main input 
The path to the input file for the external Domain Identifier program should be 
declared in this box in case that it will be necessary. The input file will be 
copied on the execution directory of the program at run time.  

- Partitioning rules 
The external Domain Identifier will send all atom numbers from the 
simulation MM atom list that belongs to the inner quantum region only. The 
user must specify the embedding region by means of the Partitioning Rules 
Editor by clicking on the Partitioning Rules button. Usually, in this kind of 
domain identifier programs, the quantum region will change on the fly, and 
then the neighborhood rules (distance-based rules) have to be used instead of 
direct atom/residue/link-pair type assignment rules. 

 

The h2o test supplied with PUPIL v3.1 can illustrate the maz-QM/MM MD approach5 by 
means of running an example with two active zones (two independent water molecules). 
The test involves AMBER and DLPOLY programs with several QM programs to run a 
simple maz-QM/MM MD simulation. The tests should be executed from the tests 
directory on the installation directory. In case of the tandem Gaussian and Amber as 
external packages: 

$ cd /installation/path/of/PUPIL 

$  ctest -VV -R h20-amber-gaussian-stubDI 

 

Note: the maz-QM/MM MD implementation in PUPIL is still in beta phase. In 
order to run this kind of simulation the user has to have installed the secure shell 
protocol (ssh) and the login through ssh without password, especially when the 
simulation is running using processors located in different nodes. 
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Table 3 External QM and MM Codes that currently interfaced to PUPIL 
 Electrostatic 

Embedding 
Start-Stop 
Behavior 

Cyclic 
Behavior 

Tightly coupled 
Interface 

MPI execution 

QM codes      
deMon2k √ √   √ 
Gaussian √ √   -a,b 
NWChem √ √   √ 
Siesta  √ √ √ √ 
Orca √ √   -a 
MOPAC √ √    

      
MM codes      

AMBER √   √  
DL_POLY (classic) √   √  

a Conventional parallel execution using threads.  
b Parallel execution using LINDA software. 

 

4.1.2.3 QM Applications Currently Implemented 

Table 3 lists all possible QM and MM codes currently interfaced to PUPIL in a quick 
view of its main architectures. More details can be found in a recent PUPIL review.4 
Thus, the QM force generation applications currently implemented to run with the PUPIL 
system are: 

 

– SIESTA 
SIESTA7 is a computational chemistry and materials package that implements 
density functional theory (DFT). It has a specific interface made to work with the 
PUPIL system in both Start-Stop and CycleQM modes,2 §2.4.1 and §2.4.2). The 
main input file (.fdf) has to be specified and the remaining files (.psf) must be 
added in a general list box with the label “Other required files :”(See bottom 
Figure 4.6 ) After compilation of the SIESTA source code, patched to include the 
CycleQM capability, the siesta binary recognizes a new keyword in the .fdf input 
file that controls the CycleQM behavior. Thus, to activate CycleQM  the user must 
include the following line in the .fdf file: 

MultiScale   .true. 

 

– Gaussian  
Gaussian program8 as a general and widely used computational chemistry 
package that has many QM methods. This package works with the PUPIL system 
in Start-Stop (SS) mode.3 

Classical (embedding) particles are represented in Gaussian as immovable point 
charges through the CHARGE and NOSYMM keywords. PUPIL automatically 
provides these keywords to Gaussian, along with a list of the classical particles 
and their charges. GAUSSIAN, can provide the electric field at the locations of 
the point charges, which can be used to calculate the electrostatic force exerted on 
the classical particles by the QM region. Beginning with PUPIL version 1.3, this 
force correction is performed using Gaussian. The Prop=(Field,Read) keyword is 
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given to Gaussian. That requests a calculation of the electrostatic field supplied by 
the quantum region at a list of points in space. PUPIL supplies this list, using the 
coordinates of the classical particles, and calculates the forces from the relevant 
entries in the Gaussian log file. The PUPIL part of this calculation runs as a single 
thread, and completes within seconds. 

– deMon2k 
deMon2k9 is a DFT code which uses robust Coulomb fitting for speed and 
supports calculation of a large variety of molecular properties for many 
functionals.  In the same way that classical (embedding) particles  are represented 
in Gaussian as immovable point charges, when deMon2K is used as the QM 
program to generate forces on the quantum zone, a similar implementation is 
carried out. The newer versions of deMon2K save a file with all the forces exerted 
on the classical particles by the QM region. PUPIL automatically provides the 
required keywords (QM/MM CHARM) for that embedding to deMon2k, along 
with a list of the classical particles and their charges. Thus, at the end of each step, 
the forces to derive the QM/MM coupling term will be read.10  

Older version of deMon2k (i.e., v 2.4.2) ignores the electrostatic force exerted on 
the classical particles by the QM region. Therefore, for a multi-scale simulation, a 
quantum zone – point charge force correction is necessary (see §4.1.2.1).The 
older methodology uses the MPI-enabled PUPIL utility pcforce, which must be 
provided in the “Other required files” list (see Figure 4.6). This program 
calculates the forces on those classical zone atoms due to the QM zone atoms, 
something not ordinarily done in molecular QM codes that support classical-array 
embedding. In the case of deMon2K, the QZ-PC correction calculation was done 
via representation of the electron density on a dense point grid using the so-called 
“RHO” file (see the deMon2k manual for more details). PUPIL prepares the input 
file for the pcforce external program, including only the points at which the 
absolute value of the charge density is greater than the charge density threshold 
(see Figure 4.6) and next paragraph. While this process is computationally 
intensive and time-consuming, significant speed-up may occur if pcforce is run 
with several processors (more than 2). 

 

- Charge density threshold 

A deMon2k RHO file is used to obtain the QM electronic density at each 
MD/MM step. The RHO file is a text file containing an approximate description 
of the charge distribution of the QM region.  It uses a regularly spaced grid, each 
with a partial charge (similar to the Cube file from Gaussian program). Those 
grid-point charges are, in turn, used to calculate the electrostatic force exerted by 
the QM region on MM atoms. It is common for many of the grid-point charges to 
be negligible, and calculation of the electrostatic force is faster if these points are 
skipped. The charge density threshold is the charge level below which a grid point 
will be skipped. A typical value for the charge density threshold is 1 × 10–6. 
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– Number of grid divisions in RHO file 

These three boxes (labeled as X:, Y: and Z: in Figure 4.6) allow one to set the total 
number of divisions along the three grid axes to build the RHO file. The number 
of divisions determines the accuracy with which the total number of system 
electrons is recovered by integrating the discretized charge density. Obviously an 
excessively large number of divisions will lead to excessive demand on 
computing time and resources. The user must find an appropriate number of 
divisions to allow a balance 
between system size and available 
resources.  
Warning! Both 
pupil_paraRun_demon2k.sh and 
pcforcempi.sh should be placed in 
the simulation working directory, 
together with the XML input, in 
order to build the correct shell 
script to start up the parallel 
execution of the deMon2k and 
pcforce programs, respectively.  
Version Note: For compatibility 
reasons, the deMon2K interface 
only allows the same number of 
divisions along each of the three 
axes of the RHO file. 
 

– Other required files 

This text box (see Figure 4.6) allows the user to specify other required programs 
and files. In particular, the program pcforce can be added here; by use of  the “+” 
button. Pcforce is a utility which is shipped with current version of PUPIL and 
which produces an output file with the forces over each point charge involved in 
the classical embedding over the QZ. (see §4.1.2.3). Also the BASIS and AUXIS 
file should be named in this box to carry out deMon2K calculation properly. Any 
other required file for deMon2K should be placed here as well. 

 

– NWChem  
Version 7.0.2 of the NWChem11 computational chemistry package is supported in 
the current PUPIL interface; the older versions 6.1.1 and, 6.3 versions12 are also 
supported but were no tested for PUPIL v4.0. The main difference between both 
versions is the way that classical embedding (point charges) is defined in the input 
file and how the QM/MM coupling term are derived from the quantum 
calculations. 

 
Figure 4.6 DeMon2k QM specification 
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Classical (embedding) particles are represented in NWChem as immovable point 
charges through the BQ keyword. PUPIL automatically provides these keywords 
to NWChem, along with a list of the classical particles and their charges. 
NWChem as well as Gaussian ignores the electrostatic force exerted on the 
classical particles by the QM region. Therefore, for a multi-scale simulation, a 
quantum zone – point charge force correction is necessary. Then, each version has 
a different treatment from the interface point of view: 

- 6.3 and upper versions 
  This version of NWChem saves a file with all the forces exerted on the classical 
particles by the QM region. PUPIL read the forces in order to derive the QM/MM 
coupling term at each step. 

- 6.1.1 version 
The implementation for this previous version of NWChem is similar to that for 
deMon2k. However, the quantum zone - point charge force correction is 
calculated through the external program named Pcforce (supplied within the 
package). NWChem program builds a Cube file to represent the electron density 
on a dense grid (80 × 80 × 80 points) by default.  PUPIL automatically provides 
necessary keywords to NWChem, along with a list of the classical particles and 
their charges (see Figure 4.7). 

- Charge density threshold 
The value given to this parameter allows the neglect of many of the grid-
points in the Cube file. (See more details in previous deMon2k section). A 
typical value for this parameter is 1 × 10–6. 

- Number of grid divisions in Cube file 
Similar to the deMon2k interface implementation; see above. However, in this 
case the number of divisions refers to the three grid axes to build the Cube file 
from the NWChem CU.  

- Other required files 
Pcforce program should be 
named in this box. (See 
more details in previous 
deMon2K section) 

 

Warning! Both templates 
pupil_paraRun.sh and 
pcforcempi.sh should be placed 
in the simulation working 
directory, together with the 
XML input file, in order to build 
the correct shell script to start 
the parallel execution of the 

 
Figure 4.7 NWChem QM specification 
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NWChem and Pcforce programs, respectively.  
 

– ORCA 
ORCA13 is an ab initio, DFT and semiempirical SCF-MO package designed as a 
general purpose tool for quantum chemistry with specific emphasis on 
spectroscopic properties of open-shell molecules.  

Classical particles are represented in ORCA as immovable point charges 
(electrostatic embedding) and the QM program automatically generates forces on 
both quantum and classical zones when appropriate keywords are set up by 
PUPIL interface considering electrostatic embedding. 

Warning! The ORCA_PATH environment variable has to be set with the correct 
ORCA binary path in order to run all orca tests. 
 

– MOPAC 2016 
MOPAC14 (Molecular Orbital PACkage) is a semi-empirical quantum chemistry 
program based on Dewar and Thiel's NDDO approximation.15 In this program 
classical particles are represented as immovable point charges. Specifically, the 
QM program incorporates the point charge effect into semi-empirical QM/MM 
Hamiltonian by adding the interaction energy of an electron with the electrostatic 
potential created by MM atoms (point charges) to the one-electron diagonal 
elements of Hamiltonian. MOPAC implementation requires electrostatic 
potentials on QM atoms from all MM atoms (point charges) which are supplied 
by the PUPIL interface setting up the appropriate keywords. Also, the necessary 
electrostatic forces exerted between classical and quantum particles are derived by 
the PUPIL interface using the charges provided by MOPAC (ESP charges) 
according to the MM force-field formalism.16 

4.1.2.4 Molecular Dynamics (MD). 

The CU that controls the time evolution in the simulation is the Molecular Dynamics unit. 
At each MD step, the MD unit asks PUPIL for the forces on the quantum particles, and 
those forces are evaluated through the PUPIL interface. There is only one common 
parameter to set for all the MD Calculation Units. 

– MD Steps to extract result. 
This field determines the frequency (in MD steps) at which the PUPIL Manager 
will take a snapshot of the system and store all the system coordinates and other 
internal variables in memory to dump, later on, into the output.xml or other 
intermediate files. 

4.1.2.5 MD Applications Currently Implemented 

The MD packages that currently interface with PUPIL are DL_CLASSIC (DL_POLY) 
and Amber 16 (See §2.4.2): 
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• DL_CLASSIC, version 1.9 & 2.0 (DL_POLY)17 
The interface included in this package connects with the corresponding PUPIL 
library in serial execution.2 A standard QM/MM scheme of electrostatic 
embedding has been incorporated from the version 3.0 of PUPIL. The user must 
build the DL_CLASSIC binary by means of patching the original source code; for 
instructions, see §2.4.2.1  

• Amber, versions 10 up to 22 
Starting with Amber1018 up to now, the source code has the modifications needed 
to interface properly with PUPIL in a standard QM/MM scheme of electrostatic 
embedding.3 The user must build (or have available) the corresponding 
sander.PUPIL binary; for instructions, see §2.4.2.2.  

The Amber input file does not know about the QM/MM manager. The QM/MM 
controls in Amber must not be invoked because all the QM/MM directives are 
introduced externally. 

Electrostatic embedding directives for both packages are available through PUPIL 
packages and QM worker input files: 

• A correction to the forces on point charges must be applied3 (see §4.1.2 Apply 
a post-QM Coulomb force correction to MM atoms) 

• The quantum and embedding zones are defined through the PUPIL Graphical 
User Interface, as well as the link atoms. (see §4.1.2.2) 

• The method and level of approximation for the QM calculation should be 
specified in the QM package input file (e.g., a Gaussian input file). This file is 
loaded into the GUI and incorporated into the PUPIL XML input. 

 

4.1.2.6 Domain Identification (DI) 

Partitioning of the system into regions of quantum and classically generated forces can be 
done using a set of simple rules (discussed above) or through an external program that 
analyzes the system variables to determine where the quantum zone is located. In the 
PUPIL architecture, external programs that perform this function are called Domain 
Identification (DI) CUs. The user has the option to call a DI CU several times during the 
simulation. This opens the possibility of a dynamic treatment for the quantum zone. 

• Steps to Dom. Ident.  
This parameter tells the Manager how many MD steps are to be taken between 
two DI calls. 

Version Note: At present, no DI interfaces are provided. However, a stub program 
is supplied as an example of how this functionality interacts with PUPIL. The user 
may use this stub as a template to create his/her own domain identifier. 
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4.1.3 KeyMM/KeyQM Mapping 
Note: This mapping is applied only to the atoms not defined in the embedding rules 
described above (see §4.1.2.2). 
As discussed in the previous sections, the parsers in the PUPIL GUI extract the kinds of 
atoms associated with the classical (KeyMM) and the quantum (KeyQM) systems. A 
simple mapping between the two kinds of particles is done by the PUPIL system using 
the atomic number, as shown in Figure 4.8. This default solution may not be sufficiently 
general for all user needs. For this reason, the KeyMM/KeyQM mapping panel allows the 
user to change the default mapping between classical and quantum particle identifiers. 

The key used in the mapping may be different depending on internal details of the CU 
in which the key will be used. The basic convention is as follows: 

– Classical particles: {residue}. 
The partition between residue and classical particle (e.g. Amber uses WAT.H1, 
ALA.CA …) or molecule and atom (e.g. DL_POLY uses SILICON.SI) will be 
kept in the keyMM and extracted from the input files. To define a custom 
partitioning of the classical system, a more specific mapping between classical 
and quantum kind of atoms is allowed. 

– Quantum particles: [PC.][{residue}.] 
The quantum keys come from two sources: The first source is the QM CU input 
files. They yield the user-defined quantum atoms and the point charges (PC) 
associated with any classical particle from the MD input files. All point charges 
have by default a “PC.” prefix before the normal key (i.e. PC.0.36). They will also 
have a residue field if it is supplied by the MD input file (i.e. PC.ALA.CA or 
PC.SILICON.SI). 

Warning! Every time that the user parses 
the QM input files, a new mapping 
between keyMM and keyQM is created 
automatically from scratch and all the 
mapping data stored previously is 
discarded. After each and every parsing, 
the user must remap all the key 
associations not automatically generated 
by default or by the embedding rules. A 
sanity check always should be done to the 
KeyMM/KeyQM default mapping.  

 

The default PUPIL mapping works in 
the following way: Every pair 
KeyMM/KeyQM mapping is assigned by 
atomic number first. If several KeyQM are 
defined for the same atomic number, the 
first KeyQM in alphabetical order is 
assigned. For example, from 

 
Figure 4.8 Default KeyMM/KeyQM Mapping 
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QMAtomLabel.BasisSet with Gaussian03 inputs, one could have hydrogens with two 
basis sets: H.BS1 and H.BS2. Or there could be several MM labels for a single atomic 
weight. The result of this assignment rule (atomic number, then alphabetic) can be 
incorrect, depending on the particle labeling and the user’s intentions. The user must 
check this mapping and edit it manually if needed. Use the KeyMM/KeyQM PUPIL 
window interface (see Figure 4.8). 

4.1.4 Show Simulation Tree 
This panel has the purpose of showing the internal memory structure of the PUPIL 
Domain and all its values. It should be the same structure as the XML file produced by 
the GUI with only minor naming differences. The panel allows the user to see which 
values are stored in memory and analyze the parsed commands. Another way to obtain 
this same information is to view the XML file using a general browser. 

4.2 Results 
There is an option to tell the PUPIL system to store intermediate results from the 
simulation. This capability is a little primitive in this release, but will be developed in 
future releases. The basic idea is to monitor 
the results of the simulation. That could be 
done through the output files of each CU or 
through a log file from data being 
transmitted between CU workers. The 
option that is implemented in this release 
allows extraction of some data from the 
QM CU when it works in Start-Stop mode. 
Data extraction in CycleQM mode is not 
implemented yet because of its significant 
performance impact.  

4.2.1 QM Simulation Summary 
This GUI panel (Figure 4.9) allows the user 
to obtain a rapid view of the quantum 
energy obtained at each step. The data can 
be exported to a *.csv (Comma Separated 
Value) file format easily with the “Write 
file” button option situated at the bottom of 
the panel. 

4.2.2 Extract xmol file 
The coordinates of the quantum zone are stored at intervals depending on the value of 
MD Steps to extract result (See Molecular Dynamics in §4.1.2). With this option, the 
coordinates can be stored in XML format. 

 
Figure 4.9 Results 
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5. XML SIMULATION FILE 
The XML (EXtensible Markup Language) format was designed to describe and store 
structured data. Simulation data typically is very structured, with complex relationships 
among input files of CUs, simulation parameters, intermediate and final results and data 
parsed and/or extracted from CU input files. Therefore, a consistent and comprehensive 
way to store all that information is to use an XML file. The PUPIL GUI helps the user 
build this simulation file. 

In this section we list the principal XML elements included in the input/output 
Simulation file.  

5.1 The SIMULATIONROOT Element 
The main element is the root element (SIMULATIONROOT). It has four sub-elements. 
Three of them are described within this subsection; a fourth, the SIMULATION element, 
is described below (see §5.2). 

5.1.1 The ATOMDICTIONARY Element 
This sub-element stores all the types of quantum atoms that PUPIL holds. The 
identification for the kind of atom is a serial number <idUnit>, but there is a direct 
relationship with the keyQM that is parsed from the QM CU input file and stored as a 
<label> element. 

5.1.2 The RESIDUEDICTIONARY Element 
This sub-element stores all the types of residues needed in PUPIL for the calculation. The 
internal identification for the kind of residue is a serial number, marked as <idUnit>, but 
there is a direct relationship with the label, which is parsed from the MD Calculation Unit 
input file and stored as a <label> element. Each residue stores also all the keyMM 
particles belonging to it. Every atom particle belonging to a given residue must have a 
different keyMM. 

5.1.3 The KEYMM Element 
This sub-element stores the default mapping between the keyMM and the keyQM. The 
keyMM values are obtained from the MD CU input files, and the keyQM values from the 
QM CU input files. 

5.2 The SIMULATION Element 
The simulation element is organized as a number of jobs. Each job belongs to a specific 
CU and stores all the variables necessary to run it. The job is stored as a nested sequence 
of records from bottom upward, in which the most specialized records contain the more 
general records. For instance, an AMBERMDJOB element contains an MDJOB element, 
which in turn contains a JOB element. First we find the more specialized values and, as 
we go down the tree branches, we find the more general stored values.  

Continuing the example, an AMBERMDJOB element is one of the most specialized 
elements from the SIMULATION element, containing an MDJOB sub-element and a 
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number of other sub-elements specific to AMBER calculations. An MDJOB sub-element 
contains a JOB sub-element and a number of other sub-elements common to MD jobs in 
general. Finally the JOB sub-element of MDJOB contains elements for storing the most 
general simulation variables. An example of a simulation XML file is at the end of this 
document, in §5.3. 

Within a SIMULATION, each job corresponds to a User Package that will be part of 
the multi-scale simulation. There is a general rule for job names, which must be respected 
in order to avoid internal problems in the execution of the Manager and the PUPIL 
workers. All job names have a common root JOB and a pair of prefixes defined by 
protocol. First, a generic prefix must be added; this is one of MD, QM, or DI, depending 
on whether the package acts as a Molecular Dynamics, Quantum Mechanics, or Domain 
Identification CU, respectively. This combination is prefixed, in turn, by the name of the 
specific User Package (such as AMBER) that will be used in the simulation with its 
PUPIL worker. Thus, the User Package name may be found at the beginning of the 
element name. An example of such an element name is AMBERMDJOB. This prefixing 
protocol is independent of the way that the CU will interact with PUPIL (Start-Stop or 
CycleQM mode). 

5.3 Example XML input file 
This section presents an incomplete XML input file, containing entries suitable for an 
MD simulation using AMBER. 

 
<?xml version=”1.0” encoding=”utf-8” ?>  
<SIMULATIONROOT> 

<ATOMDICTIONARY> 
... 
<ATOM> 

<UNIT> 
<unitTypeCode>4</unitTypeCode> 
<label>O</label> 
<mass>15.9994</mass> 
<charge>0.0</charge> 

</UNIT> 
<atomicNum>8</atomicNum> 

</ATOM> 
... 

</ATOMDICTIONARY> 
<RESIDUEDICTIONARY> 

... 
<RESIDUE> 

<UNIT> 
<unitTypeCode>1</unitTypeCode> 
<label>ACE</label> 
<mass>56.046</mass> 
<charge>0.0</charge> 

</UNIT> 
<mmAtomKeys> 

<atomUnit>ACE.HH31</atomUnit> 
<atomUnit>ACE.CH3</atomUnit> 
<atomUnit>ACE.HH32</atomUnit> 
<atomUnit>ACE.HH33</atomUnit> 
<atomUnit>ACE.C</atomUnit> 
<atomUnit>ACE.O</atomUnit> 

</mmAtomKeys> 
</RESIDUE> 
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... 
</RESIDUEDICTIONARY> 
<MMKEY> 

... 
<mmKey> 

<key>ACE.O</key> 
<QMkey>4</QMkey> 

</mmKey> 
... 

</MMKEY> 
<SIMULATION> 

... 
<jobs> 

<AMBERMDJOB> 
<MDJOB> 

<JOB> 
<jobID>AmberMDJob3</jobID> 
<exe> 

<path>../../../bin/sanderLinux</path> 
</exe> 
<useMpi>false</useMpi> 
<numMpiTasks>0</numMpiTasks> 
<files> 

<PUPILFILE> 
<fileID>mdin</fileID> 
<path>../data/mdin</path> 
<sections></sections> 

</PUPILFILE> 
<PUPILFILE> 

<fileID>ala3.parm7</fileID> 
<path>../data/ala3.parm7</path> 
<sections></sections> 

</PUPILFILE> 
<PUPILFILE> 

<fileID>ala3.inpcrd</fileID> 
<path>../data/ala3.inpcrd</path> 
<sections></sections> 

</PUPILFILE> 
</files> 
<coordinates> 

… 
</coordinates> 
<residues> 

… 
</residues> 

</JOB> 
<stepSaveInterval>2</stepSaveInterval> 

</MDJOB> 
<amberfiles> 

<PUPILFILE> 
<fileID>mdin</fileID> 
<path>../data/mdin</path> 
<sections></sections> 

</PUPILFILE> 
<PUPILFILE> 

<fileID>prmtop</fileID> 
<path>../data/ala3.parm7</path> 
<sections></sections> 

</PUPILFILE> 
<PUPILFILE> 

<fileID>inpcrd</fileID> 
<path>../data/ala3.inpcrd</path> 
<sections></sections> 

</PUPILFILE> 
</amberfiles> 

</AMBERMDJOB> 



PUPIL User Manual 

51 

... 
</jobs> 

</SIMULATION> 
</SIMULATIONROOT>
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